Efficiency of the bank filtration technique for diclofenac removal: A review

Bank filtration (BF) has been employed for more than a century for the production of water with a better quality, and it has been showing satisfactory results in diclofenac attenuation. Considered the most administered analgesic in the world, diclofenac has been frequently detected in water bodies....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental pollution (1987) 2022-05, Vol.300, p.118916-118916, Article 118916
Hauptverfasser: de Carvalho Filho, José Adson Andrade, da Cruz, Hedmun Matias, Fernandes, Bruna Soares, Motteran, Fabrício, de Paiva, Anderson Luiz Ribeiro, Pereira Cabral, Jaime Joaquim da Silva
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Bank filtration (BF) has been employed for more than a century for the production of water with a better quality, and it has been showing satisfactory results in diclofenac attenuation. Considered the most administered analgesic in the world, diclofenac has been frequently detected in water bodies. Besides being persistent in the environment, this compound is not completely removed by the conventional water treatments, drinking water treatment plants (DWTPs) and wastewater treatment plant (WWTPs). BF has a high complexity, whose efficiency depends on the characteristics of the observed pollutant and on the environment where the system in installed, which is why this is a topic that has been constantly studied. Nevertheless, studies present the behavior of diclofenac during the BF process. In this context, this research performed the evaluation of the factors and the biogeochemical processes that influence the efficiency of the BF technique in diclofenac removal. The aerobic conditions, higher temperatures, microbial biomass density, hydrogen potential close to neutrality and sediments with heterogeneous fractions are considered the ideal conditions in the aquifer for diclofenac removal. Nonetheless, there is no consensus on which of these factors has the greatest contribution on the mechanism of attenuation during BF. Studies with columns in laboratory and modeling affirm that the highest degradation rates occur in the first centimeters (5–50 cm) of the passage of water through the porous medium, in the environment known as hyporheic zone, where intense biogeochemical activities occur. Research has shown 100% removal efficiency for diclofenac persistent to compounds not removed during the BF process. However, half of the studies had removal efficiency that ranged between 80 and 100%. Therefore, the performance of more in-depth studies on the degradation and mobility of this compound becomes necessary for a better understanding of the conditions and biogeochemical processes which act in its attenuation. [Display omitted] •Diclofenac is the most administered painkiller in the world.•Diclofenac is frequently found in water bodies worldwide.•The bankfiltration comes to satisfactory results in the removal of the diclofenac.•Studies show variations in diclofenac removal rates for bankfiltration.•The bankfiltration efficiency is influenced by the biogeochemical conditions.
ISSN:0269-7491
1873-6424
DOI:10.1016/j.envpol.2022.118916