n‑Butanol Potentiates Subinhibitory Aminoglycosides against Bacterial Persisters and Multidrug-Resistant MRSA by Rapidly Enhancing Antibiotic Uptake

Potentiation of traditional antibiotics is of significance for combating antibiotic-resistant bacteria that have become a severe threat to human and animal health. Here, we report that 1 min co-treatment with n-butanol greatly and specifically enhances the bactericidal action of aminoglycosides by 5...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS infectious diseases 2022-02, Vol.8 (2), p.373-386
Hauptverfasser: Lv, Boyan, Bian, Mengmeng, Huang, Xuebing, Sun, Fengqi, Gao, Yuanyuan, Wang, Yan, Fu, Yajuan, Yang, Bin, Fu, Xinmiao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Potentiation of traditional antibiotics is of significance for combating antibiotic-resistant bacteria that have become a severe threat to human and animal health. Here, we report that 1 min co-treatment with n-butanol greatly and specifically enhances the bactericidal action of aminoglycosides by 5 orders of magnitude against stationary-phase Staphylococcus aureus cells, with n-propanol and isobutanol showing less potency. This combined treatment also rapidly kills various S. aureus persisters, methicillin-resistant S. aureus (MRSA) cells, and numerous Gram-positive and -negative pathogens including some clinically isolated multidrug-resistant pathogens (e.g., S. aureus, Staphylococcus epidermidis, and Enterococcus faecalis) in vitro, as well as S. aureus in mice. Mechanistically, the potentiation results from the actions of aminoglycosides on their conventional target ribosome rather than the antiseptic effect of n-butanol and is achieved by rapidly enhancing the bacterial uptake of aminoglycosides, while salts and inhibitors of proton motive force (e.g., CCCP) can diminish this uptake. Importantly, such n-butanol-enhanced antibiotic uptake even enables subinhibitory concentrations of aminoglycosides to rapidly kill both MRSA and conventional S. aureus cells. Given n-butanol is a non-metabolite in the pathogens we tested, our work may open avenues to develop a metabolite-independent strategy for aminoglycoside potentiation to rapidly eliminate antibiotic-resistant/tolerant pathogens, as well as for reducing the toxicity associated with aminoglycoside use.
ISSN:2373-8227
2373-8227
DOI:10.1021/acsinfecdis.1c00559