Spherical model for turbulence

We develop a large-N method for the problem of homogeneous turbulence. The spherical (N tends to infinity) limit yields Kraichnan's direct interaction approximation equations. Implications for real turbulence (N = 1) are discussed. In particular, we argue that the renormalization-group results...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review letters 1993-02, Vol.70 (8), p.1101-1104
Hauptverfasser: CHUNG-YU MOU, WEICHMAN, P. B
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We develop a large-N method for the problem of homogeneous turbulence. The spherical (N tends to infinity) limit yields Kraichnan's direct interaction approximation equations. Implications for real turbulence (N = 1) are discussed. In particular, we argue that the renormalization-group results obtained by setting the expansion parameter y = 4 are incorrect, and that the Kolmogorov exponent zeta has a nontrivial dependence on N. This value is remarkably close to the experimental result zeta = 5/3, which must therefore result from higher-order corrections in powers of 1/N. (Author)
ISSN:0031-9007
1079-7114
DOI:10.1103/PhysRevLett.70.1101