Spherical model for turbulence
We develop a large-N method for the problem of homogeneous turbulence. The spherical (N tends to infinity) limit yields Kraichnan's direct interaction approximation equations. Implications for real turbulence (N = 1) are discussed. In particular, we argue that the renormalization-group results...
Gespeichert in:
Veröffentlicht in: | Physical review letters 1993-02, Vol.70 (8), p.1101-1104 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We develop a large-N method for the problem of homogeneous turbulence. The spherical (N tends to infinity) limit yields Kraichnan's direct interaction approximation equations. Implications for real turbulence (N = 1) are discussed. In particular, we argue that the renormalization-group results obtained by setting the expansion parameter y = 4 are incorrect, and that the Kolmogorov exponent zeta has a nontrivial dependence on N. This value is remarkably close to the experimental result zeta = 5/3, which must therefore result from higher-order corrections in powers of 1/N. (Author) |
---|---|
ISSN: | 0031-9007 1079-7114 |
DOI: | 10.1103/PhysRevLett.70.1101 |