PFAS Analysis with Ultrahigh Resolution 21T FT-ICR MS: Suspect and Nontargeted Screening with Unrivaled Mass Resolving Power and Accuracy

Per- and polyfluoroalkyl substances (PFASs) are a large family of thousands of chemicals, many of which have been identified using nontargeted time-of-flight and Orbitrap mass spectrometry methods. Comprehensive characterization of complex PFAS mixtures is critical to assess their environmental tran...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental science & technology 2022-02, Vol.56 (4), p.2455-2465
Hauptverfasser: Young, Robert B, Pica, Nasim E, Sharifan, Hamidreza, Chen, Huan, Roth, Holly K, Blakney, Greg T, Borch, Thomas, Higgins, Christopher P, Kornuc, John J, McKenna, Amy M, Blotevogel, Jens
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Per- and polyfluoroalkyl substances (PFASs) are a large family of thousands of chemicals, many of which have been identified using nontargeted time-of-flight and Orbitrap mass spectrometry methods. Comprehensive characterization of complex PFAS mixtures is critical to assess their environmental transport, transformation, exposure, and uptake. Because 21 tesla (T) Fourier-transform ion cyclotron resonance mass spectrometry (FT-ICR MS) offers the highest available mass resolving power and sub-ppm mass errors across a wide molecular weight range, we developed a nontargeted 21 T FT-ICR MS method to screen for PFASs in an aqueous film-forming foam (AFFF) using suspect screening, a targeted formula database (C, H, Cl, F, N, O, P, S; ≤865 Da), isotopologues, and Kendrick-analogous mass difference networks (KAMDNs). False-positive PFAS identifications in a natural organic matter (NOM) sample, which served as the negative control, suggested that a minimum length of 3 should be imposed when annotating CF2-homologous series with positive mass defects. We putatively identified 163 known PFASs during suspect screening, as well as 134 novel PFASs during nontargeted screening, including a suspected polyethoxylated perfluoroalkane sulfonamide series. This study shows that 21 T FT-ICR MS analysis can provide unique insights into complex PFAS composition and expand our understanding of PFAS chemistries in impacted matrices.
ISSN:0013-936X
1520-5851
DOI:10.1021/acs.est.1c08143