On a general q-Fourier transformation with nonsymmetric kernels

Wiener used the Poisson kernel for the Hermite polynomials to deal with the classical Fourier transform. Askey, Atakishiyev and Suslov used this approach to obtain a q-Fourier transform by using the continuous q-Hermite polynomials. Rahman and Suslov extended this result by taking the Askey-Wilson p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational and applied mathematics 1996-04, Vol.68 (1), p.25-55
Hauptverfasser: Askey, Richard A., Rahman, Mizan, Suslov, SergeǐK.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Wiener used the Poisson kernel for the Hermite polynomials to deal with the classical Fourier transform. Askey, Atakishiyev and Suslov used this approach to obtain a q-Fourier transform by using the continuous q-Hermite polynomials. Rahman and Suslov extended this result by taking the Askey-Wilson polynomials, considered to be the most general continuous classical orthogonal polynomials. The theory of q-Fourier transformation is further extended here by considering a nonsymmetric version of the Poisson kernel with Askey-Wilson polynomials. This approach enables us to obtain some new results, for example, the complex and real orthogonalities of these kernels.
ISSN:0377-0427
1879-1778
DOI:10.1016/0377-0427(95)00259-6