On a general q-Fourier transformation with nonsymmetric kernels
Wiener used the Poisson kernel for the Hermite polynomials to deal with the classical Fourier transform. Askey, Atakishiyev and Suslov used this approach to obtain a q-Fourier transform by using the continuous q-Hermite polynomials. Rahman and Suslov extended this result by taking the Askey-Wilson p...
Gespeichert in:
Veröffentlicht in: | Journal of computational and applied mathematics 1996-04, Vol.68 (1), p.25-55 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Wiener used the Poisson kernel for the Hermite polynomials to deal with the classical Fourier transform. Askey, Atakishiyev and Suslov used this approach to obtain a
q-Fourier transform by using the continuous
q-Hermite polynomials. Rahman and Suslov extended this result by taking the Askey-Wilson polynomials, considered to be the most general continuous classical orthogonal polynomials. The theory of
q-Fourier transformation is further extended here by considering a nonsymmetric version of the Poisson kernel with Askey-Wilson polynomials. This approach enables us to obtain some new results, for example, the complex and real orthogonalities of these kernels. |
---|---|
ISSN: | 0377-0427 1879-1778 |
DOI: | 10.1016/0377-0427(95)00259-6 |