Detection and Analysis of Microplastics in Human Sputum

Microplastic pollution is an emerging environmental problem, and little research has focused on its impact on the human body. Based on retrospective case series, the study required participants to fill out a questionnaire and provide sputum samples in order to investigate the presence of microplasti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental science & technology 2022-02, Vol.56 (4), p.2476-2486
Hauptverfasser: Huang, Shumin, Huang, Xiaoxin, Bi, Ran, Guo, Qiuxia, Yu, Xiaolin, Zeng, Qinghui, Huang, Ziyu, Liu, Tianming, Wu, Haisheng, Chen, Yuliang, Xu, Jialong, Wu, Yinge, Guo, Pi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Microplastic pollution is an emerging environmental problem, and little research has focused on its impact on the human body. Based on retrospective case series, the study required participants to fill out a questionnaire and provide sputum samples in order to investigate the presence of microplastics in human sputum and determine whether humans involuntarily inhale them. A total of 22 patients suffering from different respiratory diseases were recruited. We used an Agilent 8700 laser infrared imaging spectrometer and Fourier-transform infrared microscope to analyze sputum samples and evaluate microplastics in the respiratory tract. Remarkably, the size range of the method for detecting microplastics in our study is 20–500 μm. The results showed that 21 types of microplastics were identified, and polyurethane was dominant, followed by polyester, chlorinated polyethylene, and alkyd varnish, accounting for 78.36% of the total microplastics. Most of the aspirated microplastics detected are smaller than 500 μm in size (median: 75.43 μm; interquartile range: 44.67–210.64 μm). Microplastics are ubiquitous in all sputum, indicating that inhalation is a potential way for plastics to enter the human body. Additionally, the quantities of microplastic types in the respiratory tract are related to smoking, invasive examination, etc. (P < 0.05). This study sheds new light on microplastic exposure, which provides basic data for the risk assessment of microplastics to human health.
ISSN:0013-936X
1520-5851
DOI:10.1021/acs.est.1c03859