Thermoelectric Enhancement in Single Organic Radical Molecules

Organic thermoelectric materials have potential for wearable heating, cooling, and energy generation devices at room temperature. For this to be technologically viable, high-conductance (G) and high-Seebeck-coefficient (S) materials are needed. For most semiconductors, the increase in S is accompani...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nano letters 2022-02, Vol.22 (3), p.948-953
Hauptverfasser: Hurtado-Gallego, Juan, Sangtarash, Sara, Davidson, Ross, Rincón-García, Laura, Daaoub, Abdalghani, Rubio-Bollinger, Gabino, Lambert, Colin J, Oganesyan, Vasily S, Bryce, Martin R, Agraït, Nicolás, Sadeghi, Hatef
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Organic thermoelectric materials have potential for wearable heating, cooling, and energy generation devices at room temperature. For this to be technologically viable, high-conductance (G) and high-Seebeck-coefficient (S) materials are needed. For most semiconductors, the increase in S is accompanied by a decrease in G. Here, using a combined experimental and theoretical investigation, we demonstrate that a simultaneous enhancement of S and G can be achieved in single organic radical molecules, thanks to their intrinsic spin state. A counterintuitive quantum interference (QI) effect is also observed in stable Blatter radical molecules, where constructive QI occurs for a meta-connected radical, leading to further enhancement of thermoelectric properties. Compared to an analogous closed-shell molecule, the power factor is enhanced by more than 1 order of magnitude in radicals. These results open a new avenue for the development of organic thermoelectric materials operating at room temperature.
ISSN:1530-6984
1530-6992
DOI:10.1021/acs.nanolett.1c03698