Mechanical waves caused by collective cell migration: generation

Long-timescale viscoelasticity caused by collective cell migration (CCM) significantly influences cell rearrangement and induces generation of mechanical waves. The phenomenon represents a product of the active turbulence occurring at low Reynolds number. The generation of mechanical waves has been...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European biophysics journal 2022, Vol.51 (1), p.1-13
Hauptverfasser: Pajic-Lijakovic, Ivana, Milivojevic, Milan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Long-timescale viscoelasticity caused by collective cell migration (CCM) significantly influences cell rearrangement and induces generation of mechanical waves. The phenomenon represents a product of the active turbulence occurring at low Reynolds number. The generation of mechanical waves has been a subject of intensive research primarily in 2D multicellular systems, while 3D systems have not been considered in this context. The aim of this contribution is to discuss the generation of mechanical waves during 3D CCM in two model systems: (1) the fusion of two-cell aggregates and (2) cell aggregate rounding after uni-axial compression, pointing out that mechanical waves represent a characteristic of CCM in general. Such perturbations are also involved in various biological processes, such as embryogenesis, wound healing and cancer invasion. The inter-relation between the viscoelasticity and the appearance of active turbulence remains poorly understood even in 2D. The phenomenon represents a consequence of the competition between the viscoelastic force and the surface tension force which induces successive stiffening and softening of parts of multicellular systems. The viscoelastic force is a product of the residual cell stress accumulation and its inhomogeneous distribution caused by CCM. This modeling consideration represents a powerful tool to address the generation of mechanical waves in CCM towards an understanding of this important but still controversial topic.
ISSN:0175-7571
1432-1017
DOI:10.1007/s00249-021-01581-x