Direct Observation of PFIB-Induced Clustering in Precipitation-Strengthened Al Alloys by Atom Probe Tomography

The effect of sample preparation on a pre-aged Al–Mg–Si–Cu alloy has been evaluated using atom probe tomography. Three methods of preparation were investigated: electropolishing (control), Ga+ focused ion beam (FIB) milling, and Xe+ plasma FIB (PFIB) milling. Ga+-based FIB preparation was shown to i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Microscopy and microanalysis 2022-04, Vol.28 (2), p.296-301
Hauptverfasser: Tweddle, David, Johnson, Jonathan A., Kapoor, M., Mileski, Sean, Carsley, John E., Thompson, Gregory B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The effect of sample preparation on a pre-aged Al–Mg–Si–Cu alloy has been evaluated using atom probe tomography. Three methods of preparation were investigated: electropolishing (control), Ga+ focused ion beam (FIB) milling, and Xe+ plasma FIB (PFIB) milling. Ga+-based FIB preparation was shown to introduce significant amount of Ga contamination throughout the reconstructed sample (≈1.3 at%), while no Xe contamination was detected in the PFIB-prepared sample. Nevertheless, a significantly higher cluster density was observed in the Xe+ PFIB-prepared sample (≈25.0 × 1023 m−3) as compared to the traditionally produced electropolished sample (≈3.2 × 1023 m−3) and the Ga+ FIB sample (≈5.6 × 1023 m−3). Hence, the absence of the ion milling species does not necessarily mean an absence of specimen preparation defects. Specifically, the FIB and PFIB-prepared samples had more Si-rich clusters as compared to electropolished samples, which is indicative of vacancy stabilization via solute clustering.
ISSN:1431-9276
1435-8115
DOI:10.1017/S1431927621013970