Effects of activated sludge and UV disinfection processes on the bacterial community and antibiotic resistance profile in a municipal wastewater treatment plant

Wastewater tertiary treatment has been pointed out as an effective alternative for reducing the concentration of antibiotic resistant bacteria and genes (ARB and ARGs) in wastewaters. The present work aimed to build on the current knowledge about the effects of activated sludge and UV irradiation on...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental science and pollution research international 2022-05, Vol.29 (24), p.36088-36099
Hauptverfasser: Dias, Marcela França, Leroy-Freitas, Deborah, Machado, Elayne Cristina, da Silva Santos, Leticia, Leal, Cintia Dutra, da Rocha Fernandes, Gabriel, de Araújo, Juliana Calábria
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Wastewater tertiary treatment has been pointed out as an effective alternative for reducing the concentration of antibiotic resistant bacteria and genes (ARB and ARGs) in wastewaters. The present work aimed to build on the current knowledge about the effects of activated sludge and UV irradiation on antibiotic resistance determinants in biologically treated wastewaters. For that, the microbial community and ARGs’ composition of samples collected after preliminary (APT), secondary (AST), and tertiary (ATT) treatments in a full-scale wastewater treatment plant using a modified activated sludge (MAS) system followed by an UV stage (16 mJ/cm 2 ) were investigated through culture-dependent and independent approaches (including metagenomics). A total of 24 phyla and 460 genera were identified, with predominance of Gammaproteobacteria in all samples. Pathogenic genera corresponded to 8.6% of all sequences on average, mainly Acinetobacter and Streptococcus . Significant differences ( p  
ISSN:0944-1344
1614-7499
DOI:10.1007/s11356-022-18749-3