α‑Synuclein Aggregation Inhibitory Prunolides and a Dibrominated β‑Carboline Sulfamate from the Ascidian Synoicum prunum

Seven new polyaromatic bis-spiroketal-containing butenolides, the prunolides D–I (4–9) and cis-prunolide C (10), a new dibrominated β-carboline sulfamate named pityriacitrin C (11), alongside the known prunolides A–C (1–3) were isolated from the Australian colonial ascidian Synoicum prunum. The prun...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of natural products (Washington, D.C.) D.C.), 2022-02, Vol.85 (2), p.441-452
Hauptverfasser: Holland, Darren C, Prebble, Dale W, Er, Safak, Hayton, Joshua B, Robertson, Luke P, Avery, Vicky M, Domanskyi, Andrii, Kiefel, Milton J, Hooper, John N. A, Carroll, Anthony R
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Seven new polyaromatic bis-spiroketal-containing butenolides, the prunolides D–I (4–9) and cis-prunolide C (10), a new dibrominated β-carboline sulfamate named pityriacitrin C (11), alongside the known prunolides A–C (1–3) were isolated from the Australian colonial ascidian Synoicum prunum. The prunolides D–G (4–7) represent the first asymmetrically brominated prunolides, while cis-prunolide C (10) is the first reported with a cis-configuration about the prunolide’s bis-spiroketal core. The prunolides displayed binding activities with the Parkinson’s disease-implicated amyloid protein α-synuclein in a mass spectrometry binding assay, while the prunolides (1–5 and 10) were found to significantly inhibit the aggregation (>89.0%) of α-synuclein in a ThT amyloid dye assay. The prunolides A–C (1–3) were also tested for inhibition of pSyn aggregate formation in a primary embryonic mouse midbrain dopamine neuron model with prunolide B (2) displaying statistically significant inhibitory activity at 0.5 μM. The antiplasmodial and antibacterial activities of the isolates were also examined with prunolide C (3) displaying only weak activity against the 3D7 parasite strain of Plasmodium falciparum. Our findings reported herein suggest that the prunolides could provide a novel scaffold for the exploration of future therapeutics aimed at inhibiting amyloid protein aggregation and the treatment of numerous neurodegenerative diseases.
ISSN:0163-3864
1520-6025
DOI:10.1021/acs.jnatprod.1c01172