Ultrasensitive Glutathione-Mediated Facile Split-Type Electrochemiluminescence Nanoswitch Sensing Platform

Seeking for an advanced electrochemiluminescence (ECL) platform is still an active and continuous theme in the ECL-sensing realm. This work outlines a femtomolar-level and highly selective glutathione (GSH) and adenosine triphosphate (ATP) ECL assay strategy using a facile split-type gold nanocluste...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analytical chemistry (Washington) 2022-02, Vol.94 (4), p.2341-2347
Hauptverfasser: Huang, Zhongnan, Yu, Sunxing, Jian, Meili, Weng, Zhimin, Deng, Haohua, Peng, Huaping, Chen, Wei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Seeking for an advanced electrochemiluminescence (ECL) platform is still an active and continuous theme in the ECL-sensing realm. This work outlines a femtomolar-level and highly selective glutathione (GSH) and adenosine triphosphate (ATP) ECL assay strategy using a facile split-type gold nanocluster (AuNC) probe-based ECL platform. The system utilizes GSH as an efficient etching agent to turn on the MnO2/AuNC-based ECL nanoswitch platform. This method successfully achieves an ultrasensitive detection of GSH, which significantly outperformed other sensors. Based on the above excellent results, GSH-related biological assays have been further established by taking ATP as a model. Combined with the high catalytic oxidation ability of DNAzyme, this ECL sensor can realize ATP assay as low as 1.4 fmol without other complicated exonuclease amplification strategies. Thus, we successfully achieved an ultrahigh sensitivity, extremely wide dynamic range, great simplicity, and strong anti-interference detection of ATP. In addition, the actual sample detection for GSH and ATP exhibits satisfactory results. We believe that our proposed high-performance platform will provide more possibilities for the detection of other GSH-related substances and show great prospect in disease diagnosis and biochemical research.
ISSN:0003-2700
1520-6882
DOI:10.1021/acs.analchem.1c05198