Precise Tuning of Multiple Perovskite Photoluminescence by Volume-Controlled Printing of Perovskite Precursor Solution on Cellulose Paper

Metal halide perovskite nanocrystals (PeNCs) with a controlled quantum size effect have received intense interest for potential applications in optoelectronics and photonics. Here, we present a simple and innovative strategy to precisely tune the photoluminescence color of PeNCs by simply printing p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS nano 2022-02, Vol.16 (2), p.2521-2534
Hauptverfasser: Kim, Dong Wook, Hyun, Chohee, Shin, Tae Joo, Jeong, Unyong
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Metal halide perovskite nanocrystals (PeNCs) with a controlled quantum size effect have received intense interest for potential applications in optoelectronics and photonics. Here, we present a simple and innovative strategy to precisely tune the photoluminescence color of PeNCs by simply printing perovskite precursor solutions on cellulose papers. Depending on the volume of the printed precursor solutions, the PeNCs are autonomously grown into three discrete sizes, and their relative size population is controlled; accordingly, not only the number of multiple PL peaks but also their relative intensities can be precisely tuned. This autonomous size control is obtained through the efflorescence, which is advection of salt ions toward the surface of a porous medium during solvent evaporation and also through the confined crystal growth in the hierarchical structure of cellulose fibers. The infiltrated PeNCs are environmentally stable against moisture (for 3 months in air at 70% relative humidity) and strong light exposure by hydrophobic surface treatment. This study also demonstrates invisible encryption and highly secured unclonable anticounterfeiting patterns on deformable cellulose substrates and banknotes.
ISSN:1936-0851
1936-086X
DOI:10.1021/acsnano.1c09140