Colon tissue image segmentation with MWSI-NET

Developments in deep learning have resulted in computer-aided diagnosis for many types of cancer. Previously, pathologists manually performed the labeling work in the analysis of colon tissues, which is both time-consuming and labor-intensive. Results are easily affected by subjective conditions. Th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Medical & biological engineering & computing 2022-03, Vol.60 (3), p.727-737
Hauptverfasser: Cheng, Hao, Wu, Kaijie, Tian, Jie, Ma, Kai, Gu, Chaocheng, Guan, Xinping
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Developments in deep learning have resulted in computer-aided diagnosis for many types of cancer. Previously, pathologists manually performed the labeling work in the analysis of colon tissues, which is both time-consuming and labor-intensive. Results are easily affected by subjective conditions. Therefore, it is beneficial to identify the cancerous regions of colon cancer with the assistance of computer-aided technology. Pathological images are often difficult to process due to their irregularity, similarity between cancerous and non-cancerous tissues and large size. We propose a multi-scale perceptual field fusion structure based on a dilated convolutional network. Using this model, a structure of dilated convolution kernels with different aspect ratios is inserted, which can process cancerous regions of different sizes and generate larger receptive fields. Thus, the model can fuse detailed information at different scales for better semantic segmentation. Two different attention mechanisms are adopted to highlight the cancerous areas. A large, open-source dataset was used to verify improved efficacy when compared to previously disclosed methods. Graphical abstract
ISSN:0140-0118
1741-0444
DOI:10.1007/s11517-022-02501-7