Protective Effects of Probucol on Different Brain Cells Exposed to Manganese

Manganese (Mn) is an essential metal for many functions in the body. However, in excess, it can be neurotoxic and cause a Parkinson-like syndrome, known as manganism. Here, we aimed to identify a protective effect of probucol, a lipid-lowering agent with anti-inflammatory and antioxidant properties,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neurotoxicity research 2022-02, Vol.40 (1), p.276-285
Hauptverfasser: da Silva, Erica Blenda, Eichwald, Tuany, Glaser, Viviane, Varela, Karina Giacomini, Baptistella, Antuani Rafael, de Carvalho, Diego, Remor, Aline Pertile
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Manganese (Mn) is an essential metal for many functions in the body. However, in excess, it can be neurotoxic and cause a Parkinson-like syndrome, known as manganism. Here, we aimed to identify a protective effect of probucol, a lipid-lowering agent with anti-inflammatory and antioxidant properties, against Mn-induced toxicity in human neuroblastoma (SH-SY5Y) and glioblastoma (C6) cell lines. The cells were incubated with increasing concentrations of Mn followed by probucol addition 1, 3, 6, and/or 24 h to assess the metal toxic doses and measure the protective effect of probucol against Mn-induced oxidative damage. Longer exposition to Mn showed decreased SH-SY5Y cellular viability in concentrations higher than 100 µM, and probucol was able to prevent this effect. The C6 cells were more sensitive to the Mn deleterious actions, decreasing the cell viability after 6 h of 500 µM Mn exposure. In addition, probucol prevents the complex I and II of the mitochondrial respiratory chain (MRC) inhibition caused by Mn and decreased the intracellular ROS production. Taken together, our results showed that Mn toxicity affects differently both cell lines and probucol has a protective effect against the oxidative imbalance in the central nervous system.
ISSN:1029-8428
1476-3524
DOI:10.1007/s12640-021-00458-3