Hydrophobic, flexible electromagnetic interference shielding films derived from hydrolysate of waste leather scraps
[Display omitted] With the rapid development of wireless telecommunication technologies, it is of fundamental and technological significance to design and engineer high-performance shielding materials against electromagnetic interference (EMI). Herein, a three-step procedure is developed to produce...
Gespeichert in:
Veröffentlicht in: | Journal of colloid and interface science 2022-05, Vol.613, p.396-405 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | [Display omitted]
With the rapid development of wireless telecommunication technologies, it is of fundamental and technological significance to design and engineer high-performance shielding materials against electromagnetic interference (EMI). Herein, a three-step procedure is developed to produce hydrophobic, flexible nanofiber films for EMI shielding and pressure sensing based on hydrolysate of waste leather scraps (HWLS): (i) electrospinning preparation of HWLS/polyacrylonitrile (PAN) nanofiber films, (ii) adsorption of silver nanowires (AgNWs) onto HWLS/PAN nanofiber films, and (iii) coating of HWLS/PAN/AgNWs nanofiber films with polydimethylsiloxane (PDMS). Scanning electron microscopy studies show that AgNWs are interweaved with HWLS/PAN nanofibers to form a conductive network, exhibiting an electrical conductivity of 105 S m−1 and shielding efficiency of 65 dB for a 150 μm-thick HWLS/PAN/AgNWs film. The HWLS/PAN/AgNWs/PDMS film displays an even better electromagnetic shielding efficiency of 80 dB and a water contact angle of 132.5°. Results from this study highlight the unique potential of leather solid wastes for the production of high-performance, environmentally friendly, and low-cost EMI shielding materials. |
---|---|
ISSN: | 0021-9797 1095-7103 |
DOI: | 10.1016/j.jcis.2022.01.043 |