Condensed, Microtubule-coating Thin Organelles for Orthogonal Translation in Mammalian Cells

[Display omitted] •Microtubule-based synthetic organelles enable orthogonal translation of selected mRNAs.•Synthetic fiber-like organelles coat microtubules.•A eukaryotic cell with two genetic codes.•Recruited mRNAs get translated selectively with an expanded genetic code. Membraneless organelles ar...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of molecular biology 2022-04, Vol.434 (8), p.167454-167454, Article 167454
Hauptverfasser: Reinkemeier, Christopher D., Lemke, Edward A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 167454
container_issue 8
container_start_page 167454
container_title Journal of molecular biology
container_volume 434
creator Reinkemeier, Christopher D.
Lemke, Edward A.
description [Display omitted] •Microtubule-based synthetic organelles enable orthogonal translation of selected mRNAs.•Synthetic fiber-like organelles coat microtubules.•A eukaryotic cell with two genetic codes.•Recruited mRNAs get translated selectively with an expanded genetic code. Membraneless organelles are capable of selectively performing complex tasks in living cells despite dynamically exchanging with their surroundings. This is an exquisite example how self-organization of proteins and RNAs can lead to more complex functionalities in living systems. Importantly, the absence of a membrane boundary can enable easier access to larger macromolecular complexes that can be challenging to be transported across a membrane. We previously formed orthogonally translating designer membraneless organelles by combining phase separation with kinesin motor proteins to highly enrich engineered translational factors in large organelles. We also showed that even submicron thick designer organelles can be formed, by mounting them onto membranes, which, presumable assisted by 2D condensation, leads to thin film-like condensates. In this study we show that orthogonal translation can also be built with fiber-like appearing organelles. Here, the microtubule-end binding protein EB1 was used to form fiber-like OT organelles along the microtubule cytoskeleton that perform highly selective and efficient orthogonal translation. We also show an improved simplified design of OT organelles. Together this extends OT organelle technology and demonstrates that the microtubule cytoskeleton is a powerful platform for advanced synthetic organelle engineering.
doi_str_mv 10.1016/j.jmb.2022.167454
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2620753673</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022283622000183</els_id><sourcerecordid>2620753673</sourcerecordid><originalsourceid>FETCH-LOGICAL-c353t-6ba38ab6e178915bc038c3cd2a5e2d50b634beabbd6ac0c99bed47c2c5c45b9f3</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWqs_wIvs0YNb87HJ7uJJil-g9FJvQsjHtKbsJprsCv57I60ePQ3DPPMy8yB0RvCMYCKuNrNNr2cUUzojoq54tYcmBDdt2QjW7KMJzpOSNkwcoeOUNhhjzqrmEB0xjhnjAk_Q6zx4Cz6BvSyenYlhGPXYQWmCGpxfF8s354tFXCsPXQepWIWY2-EtrINXXbGMyqcuo8EXGXxWfa86p3wxz3g6QQcr1SU43dUperm7Xc4fyqfF_eP85qk0jLOhFFqxRmkBpG5awrXBrDHMWKo4UMuxFqzSoLS2Qhls2laDrWpDDTcV1-2KTdHFNvc9ho8R0iB7l0y-IF8dxiSpoLjmTNQso2SL5ldTirCS79H1Kn5JguWPVLmRWar8kSq3UvPO-S5-1D3Yv41fixm43gKQn_x0EGUyDrwB6yKYQdrg_on_BgXTiMo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2620753673</pqid></control><display><type>article</type><title>Condensed, Microtubule-coating Thin Organelles for Orthogonal Translation in Mammalian Cells</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Reinkemeier, Christopher D. ; Lemke, Edward A.</creator><creatorcontrib>Reinkemeier, Christopher D. ; Lemke, Edward A.</creatorcontrib><description>[Display omitted] •Microtubule-based synthetic organelles enable orthogonal translation of selected mRNAs.•Synthetic fiber-like organelles coat microtubules.•A eukaryotic cell with two genetic codes.•Recruited mRNAs get translated selectively with an expanded genetic code. Membraneless organelles are capable of selectively performing complex tasks in living cells despite dynamically exchanging with their surroundings. This is an exquisite example how self-organization of proteins and RNAs can lead to more complex functionalities in living systems. Importantly, the absence of a membrane boundary can enable easier access to larger macromolecular complexes that can be challenging to be transported across a membrane. We previously formed orthogonally translating designer membraneless organelles by combining phase separation with kinesin motor proteins to highly enrich engineered translational factors in large organelles. We also showed that even submicron thick designer organelles can be formed, by mounting them onto membranes, which, presumable assisted by 2D condensation, leads to thin film-like condensates. In this study we show that orthogonal translation can also be built with fiber-like appearing organelles. Here, the microtubule-end binding protein EB1 was used to form fiber-like OT organelles along the microtubule cytoskeleton that perform highly selective and efficient orthogonal translation. We also show an improved simplified design of OT organelles. Together this extends OT organelle technology and demonstrates that the microtubule cytoskeleton is a powerful platform for advanced synthetic organelle engineering.</description><identifier>ISSN: 0022-2836</identifier><identifier>EISSN: 1089-8638</identifier><identifier>DOI: 10.1016/j.jmb.2022.167454</identifier><identifier>PMID: 35033560</identifier><language>eng</language><publisher>Netherlands: Elsevier Ltd</publisher><subject>Bioengineering ; Cytoskeleton - metabolism ; genetic code expansion ; Humans ; Kinesins ; Microtubule-Associated Proteins - genetics ; Microtubule-Associated Proteins - metabolism ; microtubules ; Microtubules - metabolism ; noncanonical amino acids ; organelle engineering ; Organelles - metabolism ; phase separation ; Protein Biosynthesis</subject><ispartof>Journal of molecular biology, 2022-04, Vol.434 (8), p.167454-167454, Article 167454</ispartof><rights>2022 Elsevier Ltd</rights><rights>Copyright © 2022 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c353t-6ba38ab6e178915bc038c3cd2a5e2d50b634beabbd6ac0c99bed47c2c5c45b9f3</citedby><cites>FETCH-LOGICAL-c353t-6ba38ab6e178915bc038c3cd2a5e2d50b634beabbd6ac0c99bed47c2c5c45b9f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0022283622000183$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,65309</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35033560$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Reinkemeier, Christopher D.</creatorcontrib><creatorcontrib>Lemke, Edward A.</creatorcontrib><title>Condensed, Microtubule-coating Thin Organelles for Orthogonal Translation in Mammalian Cells</title><title>Journal of molecular biology</title><addtitle>J Mol Biol</addtitle><description>[Display omitted] •Microtubule-based synthetic organelles enable orthogonal translation of selected mRNAs.•Synthetic fiber-like organelles coat microtubules.•A eukaryotic cell with two genetic codes.•Recruited mRNAs get translated selectively with an expanded genetic code. Membraneless organelles are capable of selectively performing complex tasks in living cells despite dynamically exchanging with their surroundings. This is an exquisite example how self-organization of proteins and RNAs can lead to more complex functionalities in living systems. Importantly, the absence of a membrane boundary can enable easier access to larger macromolecular complexes that can be challenging to be transported across a membrane. We previously formed orthogonally translating designer membraneless organelles by combining phase separation with kinesin motor proteins to highly enrich engineered translational factors in large organelles. We also showed that even submicron thick designer organelles can be formed, by mounting them onto membranes, which, presumable assisted by 2D condensation, leads to thin film-like condensates. In this study we show that orthogonal translation can also be built with fiber-like appearing organelles. Here, the microtubule-end binding protein EB1 was used to form fiber-like OT organelles along the microtubule cytoskeleton that perform highly selective and efficient orthogonal translation. We also show an improved simplified design of OT organelles. Together this extends OT organelle technology and demonstrates that the microtubule cytoskeleton is a powerful platform for advanced synthetic organelle engineering.</description><subject>Bioengineering</subject><subject>Cytoskeleton - metabolism</subject><subject>genetic code expansion</subject><subject>Humans</subject><subject>Kinesins</subject><subject>Microtubule-Associated Proteins - genetics</subject><subject>Microtubule-Associated Proteins - metabolism</subject><subject>microtubules</subject><subject>Microtubules - metabolism</subject><subject>noncanonical amino acids</subject><subject>organelle engineering</subject><subject>Organelles - metabolism</subject><subject>phase separation</subject><subject>Protein Biosynthesis</subject><issn>0022-2836</issn><issn>1089-8638</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kE1LAzEQhoMoWqs_wIvs0YNb87HJ7uJJil-g9FJvQsjHtKbsJprsCv57I60ePQ3DPPMy8yB0RvCMYCKuNrNNr2cUUzojoq54tYcmBDdt2QjW7KMJzpOSNkwcoeOUNhhjzqrmEB0xjhnjAk_Q6zx4Cz6BvSyenYlhGPXYQWmCGpxfF8s354tFXCsPXQepWIWY2-EtrINXXbGMyqcuo8EXGXxWfa86p3wxz3g6QQcr1SU43dUperm7Xc4fyqfF_eP85qk0jLOhFFqxRmkBpG5awrXBrDHMWKo4UMuxFqzSoLS2Qhls2laDrWpDDTcV1-2KTdHFNvc9ho8R0iB7l0y-IF8dxiSpoLjmTNQso2SL5ldTirCS79H1Kn5JguWPVLmRWar8kSq3UvPO-S5-1D3Yv41fixm43gKQn_x0EGUyDrwB6yKYQdrg_on_BgXTiMo</recordid><startdate>20220430</startdate><enddate>20220430</enddate><creator>Reinkemeier, Christopher D.</creator><creator>Lemke, Edward A.</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20220430</creationdate><title>Condensed, Microtubule-coating Thin Organelles for Orthogonal Translation in Mammalian Cells</title><author>Reinkemeier, Christopher D. ; Lemke, Edward A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c353t-6ba38ab6e178915bc038c3cd2a5e2d50b634beabbd6ac0c99bed47c2c5c45b9f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Bioengineering</topic><topic>Cytoskeleton - metabolism</topic><topic>genetic code expansion</topic><topic>Humans</topic><topic>Kinesins</topic><topic>Microtubule-Associated Proteins - genetics</topic><topic>Microtubule-Associated Proteins - metabolism</topic><topic>microtubules</topic><topic>Microtubules - metabolism</topic><topic>noncanonical amino acids</topic><topic>organelle engineering</topic><topic>Organelles - metabolism</topic><topic>phase separation</topic><topic>Protein Biosynthesis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Reinkemeier, Christopher D.</creatorcontrib><creatorcontrib>Lemke, Edward A.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of molecular biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Reinkemeier, Christopher D.</au><au>Lemke, Edward A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Condensed, Microtubule-coating Thin Organelles for Orthogonal Translation in Mammalian Cells</atitle><jtitle>Journal of molecular biology</jtitle><addtitle>J Mol Biol</addtitle><date>2022-04-30</date><risdate>2022</risdate><volume>434</volume><issue>8</issue><spage>167454</spage><epage>167454</epage><pages>167454-167454</pages><artnum>167454</artnum><issn>0022-2836</issn><eissn>1089-8638</eissn><abstract>[Display omitted] •Microtubule-based synthetic organelles enable orthogonal translation of selected mRNAs.•Synthetic fiber-like organelles coat microtubules.•A eukaryotic cell with two genetic codes.•Recruited mRNAs get translated selectively with an expanded genetic code. Membraneless organelles are capable of selectively performing complex tasks in living cells despite dynamically exchanging with their surroundings. This is an exquisite example how self-organization of proteins and RNAs can lead to more complex functionalities in living systems. Importantly, the absence of a membrane boundary can enable easier access to larger macromolecular complexes that can be challenging to be transported across a membrane. We previously formed orthogonally translating designer membraneless organelles by combining phase separation with kinesin motor proteins to highly enrich engineered translational factors in large organelles. We also showed that even submicron thick designer organelles can be formed, by mounting them onto membranes, which, presumable assisted by 2D condensation, leads to thin film-like condensates. In this study we show that orthogonal translation can also be built with fiber-like appearing organelles. Here, the microtubule-end binding protein EB1 was used to form fiber-like OT organelles along the microtubule cytoskeleton that perform highly selective and efficient orthogonal translation. We also show an improved simplified design of OT organelles. Together this extends OT organelle technology and demonstrates that the microtubule cytoskeleton is a powerful platform for advanced synthetic organelle engineering.</abstract><cop>Netherlands</cop><pub>Elsevier Ltd</pub><pmid>35033560</pmid><doi>10.1016/j.jmb.2022.167454</doi><tpages>1</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-2836
ispartof Journal of molecular biology, 2022-04, Vol.434 (8), p.167454-167454, Article 167454
issn 0022-2836
1089-8638
language eng
recordid cdi_proquest_miscellaneous_2620753673
source MEDLINE; Elsevier ScienceDirect Journals
subjects Bioengineering
Cytoskeleton - metabolism
genetic code expansion
Humans
Kinesins
Microtubule-Associated Proteins - genetics
Microtubule-Associated Proteins - metabolism
microtubules
Microtubules - metabolism
noncanonical amino acids
organelle engineering
Organelles - metabolism
phase separation
Protein Biosynthesis
title Condensed, Microtubule-coating Thin Organelles for Orthogonal Translation in Mammalian Cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T15%3A53%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Condensed,%20Microtubule-coating%20Thin%20Organelles%20for%20Orthogonal%20Translation%20in%20Mammalian%20Cells&rft.jtitle=Journal%20of%20molecular%20biology&rft.au=Reinkemeier,%20Christopher%20D.&rft.date=2022-04-30&rft.volume=434&rft.issue=8&rft.spage=167454&rft.epage=167454&rft.pages=167454-167454&rft.artnum=167454&rft.issn=0022-2836&rft.eissn=1089-8638&rft_id=info:doi/10.1016/j.jmb.2022.167454&rft_dat=%3Cproquest_cross%3E2620753673%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2620753673&rft_id=info:pmid/35033560&rft_els_id=S0022283622000183&rfr_iscdi=true