Condensed, Microtubule-coating Thin Organelles for Orthogonal Translation in Mammalian Cells
[Display omitted] •Microtubule-based synthetic organelles enable orthogonal translation of selected mRNAs.•Synthetic fiber-like organelles coat microtubules.•A eukaryotic cell with two genetic codes.•Recruited mRNAs get translated selectively with an expanded genetic code. Membraneless organelles ar...
Gespeichert in:
Veröffentlicht in: | Journal of molecular biology 2022-04, Vol.434 (8), p.167454-167454, Article 167454 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | [Display omitted]
•Microtubule-based synthetic organelles enable orthogonal translation of selected mRNAs.•Synthetic fiber-like organelles coat microtubules.•A eukaryotic cell with two genetic codes.•Recruited mRNAs get translated selectively with an expanded genetic code.
Membraneless organelles are capable of selectively performing complex tasks in living cells despite dynamically exchanging with their surroundings. This is an exquisite example how self-organization of proteins and RNAs can lead to more complex functionalities in living systems. Importantly, the absence of a membrane boundary can enable easier access to larger macromolecular complexes that can be challenging to be transported across a membrane. We previously formed orthogonally translating designer membraneless organelles by combining phase separation with kinesin motor proteins to highly enrich engineered translational factors in large organelles. We also showed that even submicron thick designer organelles can be formed, by mounting them onto membranes, which, presumable assisted by 2D condensation, leads to thin film-like condensates. In this study we show that orthogonal translation can also be built with fiber-like appearing organelles. Here, the microtubule-end binding protein EB1 was used to form fiber-like OT organelles along the microtubule cytoskeleton that perform highly selective and efficient orthogonal translation. We also show an improved simplified design of OT organelles. Together this extends OT organelle technology and demonstrates that the microtubule cytoskeleton is a powerful platform for advanced synthetic organelle engineering. |
---|---|
ISSN: | 0022-2836 1089-8638 |
DOI: | 10.1016/j.jmb.2022.167454 |