Synthesis of CoNi-layered double hydroxide on graphene oxide as adsorbent and construction of detection method for taste and odor compounds in smelling water
Taste and odor (T&O) compounds are important water pollutant, some of which are toxic. The relevant studies are all expand upon the well-known T&O compounds but for the unknown odors in smelling water. In this work, a method combining purge and trap with gas chromatograph-mass spectrometer (...
Gespeichert in:
Veröffentlicht in: | Journal of hazardous materials 2022-04, Vol.428, p.128227-128227, Article 128227 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Taste and odor (T&O) compounds are important water pollutant, some of which are toxic. The relevant studies are all expand upon the well-known T&O compounds but for the unknown odors in smelling water. In this work, a method combining purge and trap with gas chromatograph-mass spectrometer (PT-GC/MS) and disperse solid-phase extraction with gas chromatograph (GC) was first proposed to detect T&O compounds in unknown odorous water accurately. Firstly, PT-GC/MS was used for a qualitative test on unknown odors in smelling water and determine the analytes. The hollow CoNi-layered double hydroxide (LDH) on graphene oxide (GO) was then used as a composite adsorbent to pretreat the water, in which the GO provided large specific surface, and the LDH worked as a confinement cavity to enhance capture and retention capacity for volatile organic compounds (VOCs). According to the properties of T&O compounds determined by PT-GC/MS in water, a corresponding GC method was established for accurately quantitative analysis. In this paper, five T&O compounds were detected simultaneously, including dimethyl sulfide, meistylene, N, N-dimethylbenzylamine, 2, 4-dimethylbenzaldehyde and 2, 4-di-tert-butylphenol. Extraction parameters were optimized, including ratio of desorption solvent, amount of adsorbent, pH value, etc. Under the optimal conditions, the detection limits for analysis were 1.14 μg/L to 3.07 mg/L. The satisfactory recoveries were 94–98%. Furthermore, two optimal determination outcomes of odor waters from different places support the practicability of the method, which is expected to be widely used in the detection of unknown odors in smelling water.
Scheme 1. (a) Schematic illustration of the preparation of the GO@LDH. (b) Diagram of the detection process for T&O compounds. [Display omitted]
•CoNi- LDH on GO (GO@LDH) were synthesized by a simple and quick method.•GO@LDH shows high adsorption capacity for T&O compounds in waters.•The detection method combining PT-GC/MS and GC with DSPE was practical.•The proposed method has been successfully applicate in actual odorous water |
---|---|
ISSN: | 0304-3894 1873-3336 |
DOI: | 10.1016/j.jhazmat.2022.128227 |