Network and geometric characterization of three-dimensional fluid transport between two layers

We consider transport in a fluid flow of arbitrary complexity but with a dominant flow direction. One of the situations in which this occurs is when describing by an effective flow the dynamics of sufficiently small particles immersed in a turbulent fluid and vertically sinking because of their weig...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. E 2021-12, Vol.104 (6-2), p.065111-065111, Article 065111
Hauptverfasser: de la Fuente, Rebeca, Drótos, Gábor, Hernández-García, Emilio, López, Cristóbal
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 065111
container_issue 6-2
container_start_page 065111
container_title Physical review. E
container_volume 104
creator de la Fuente, Rebeca
Drótos, Gábor
Hernández-García, Emilio
López, Cristóbal
description We consider transport in a fluid flow of arbitrary complexity but with a dominant flow direction. One of the situations in which this occurs is when describing by an effective flow the dynamics of sufficiently small particles immersed in a turbulent fluid and vertically sinking because of their weight. We develop a formalism characterizing the dynamics of particles released from one layer of fluid and arriving in a second one after traveling along the dominant direction. The main ingredient in our study is the definition of a two-layer map that describes the Lagrangian transport between both layers. We combine geometric approaches and probabilistic network descriptions to analyze the two-layer map. From the geometric point of view, we express the properties of lines, surfaces, and densities transported by the flow in terms of singular values related to Lyapunov exponents, and define a specific quantifier, the finite depth Lyapunov exponent. Within the network approach, degrees and an entropy are considered to characterize transport. We also provide relationships between both methodologies. The formalism is illustrated with numerical results for a modification of the ABC flow, a model commonly studied to characterize three-dimensional chaotic advection.
doi_str_mv 10.1103/PhysRevE.104.065111
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2620084331</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2620084331</sourcerecordid><originalsourceid>FETCH-LOGICAL-c255t-a397e60b76d5fe0e191ff1c1e4b0a5b993edd0f58db7172036b2deb77a956f903</originalsourceid><addsrcrecordid>eNo9kN1LwzAUxYMobsz9BYLk0ZfOm6ZJ20cZ8wOGiuirJW1uXLVtZpIq86-3so-neziccy78CDlnMGMM-NXTauOf8XsxY5DMQArG2BEZx0kKEYDgxwediBGZev8BAExCnrL4lIy4AA5ZJsfk7QHDj3WfVHWavqNtMbi6otVKOVUFdPWvCrXtqDU0rBxipOsWOz9YqqGm6WtNg1OdX1sXaDlsIXZ0WKSN2qDzZ-TEqMbjdHcn5PVm8TK_i5aPt_fz62VUxUKESPE8RQllKrUwCMhyZgyrGCYlKFHmOUetwYhMlylLY-CyjDWWaapyIU0OfEIut7trZ7969KFoa19h06gObe-LWMYAWcI5G6J8G62c9d6hKdaubpXbFAyKf7bFnu1gJMWW7dC62D3oyxb1obMnyf8AaRp4dQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2620084331</pqid></control><display><type>article</type><title>Network and geometric characterization of three-dimensional fluid transport between two layers</title><source>American Physical Society Journals</source><creator>de la Fuente, Rebeca ; Drótos, Gábor ; Hernández-García, Emilio ; López, Cristóbal</creator><creatorcontrib>de la Fuente, Rebeca ; Drótos, Gábor ; Hernández-García, Emilio ; López, Cristóbal</creatorcontrib><description>We consider transport in a fluid flow of arbitrary complexity but with a dominant flow direction. One of the situations in which this occurs is when describing by an effective flow the dynamics of sufficiently small particles immersed in a turbulent fluid and vertically sinking because of their weight. We develop a formalism characterizing the dynamics of particles released from one layer of fluid and arriving in a second one after traveling along the dominant direction. The main ingredient in our study is the definition of a two-layer map that describes the Lagrangian transport between both layers. We combine geometric approaches and probabilistic network descriptions to analyze the two-layer map. From the geometric point of view, we express the properties of lines, surfaces, and densities transported by the flow in terms of singular values related to Lyapunov exponents, and define a specific quantifier, the finite depth Lyapunov exponent. Within the network approach, degrees and an entropy are considered to characterize transport. We also provide relationships between both methodologies. The formalism is illustrated with numerical results for a modification of the ABC flow, a model commonly studied to characterize three-dimensional chaotic advection.</description><identifier>ISSN: 2470-0045</identifier><identifier>EISSN: 2470-0053</identifier><identifier>DOI: 10.1103/PhysRevE.104.065111</identifier><identifier>PMID: 35030886</identifier><language>eng</language><publisher>United States</publisher><ispartof>Physical review. E, 2021-12, Vol.104 (6-2), p.065111-065111, Article 065111</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c255t-a397e60b76d5fe0e191ff1c1e4b0a5b993edd0f58db7172036b2deb77a956f903</cites><orcidid>0000-0003-1536-5689 ; 0000-0002-9568-8287 ; 0000-0002-0900-5188 ; 0000-0002-3445-4284</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,2863,2864,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35030886$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>de la Fuente, Rebeca</creatorcontrib><creatorcontrib>Drótos, Gábor</creatorcontrib><creatorcontrib>Hernández-García, Emilio</creatorcontrib><creatorcontrib>López, Cristóbal</creatorcontrib><title>Network and geometric characterization of three-dimensional fluid transport between two layers</title><title>Physical review. E</title><addtitle>Phys Rev E</addtitle><description>We consider transport in a fluid flow of arbitrary complexity but with a dominant flow direction. One of the situations in which this occurs is when describing by an effective flow the dynamics of sufficiently small particles immersed in a turbulent fluid and vertically sinking because of their weight. We develop a formalism characterizing the dynamics of particles released from one layer of fluid and arriving in a second one after traveling along the dominant direction. The main ingredient in our study is the definition of a two-layer map that describes the Lagrangian transport between both layers. We combine geometric approaches and probabilistic network descriptions to analyze the two-layer map. From the geometric point of view, we express the properties of lines, surfaces, and densities transported by the flow in terms of singular values related to Lyapunov exponents, and define a specific quantifier, the finite depth Lyapunov exponent. Within the network approach, degrees and an entropy are considered to characterize transport. We also provide relationships between both methodologies. The formalism is illustrated with numerical results for a modification of the ABC flow, a model commonly studied to characterize three-dimensional chaotic advection.</description><issn>2470-0045</issn><issn>2470-0053</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNo9kN1LwzAUxYMobsz9BYLk0ZfOm6ZJ20cZ8wOGiuirJW1uXLVtZpIq86-3so-neziccy78CDlnMGMM-NXTauOf8XsxY5DMQArG2BEZx0kKEYDgxwediBGZev8BAExCnrL4lIy4AA5ZJsfk7QHDj3WfVHWavqNtMbi6otVKOVUFdPWvCrXtqDU0rBxipOsWOz9YqqGm6WtNg1OdX1sXaDlsIXZ0WKSN2qDzZ-TEqMbjdHcn5PVm8TK_i5aPt_fz62VUxUKESPE8RQllKrUwCMhyZgyrGCYlKFHmOUetwYhMlylLY-CyjDWWaapyIU0OfEIut7trZ7969KFoa19h06gObe-LWMYAWcI5G6J8G62c9d6hKdaubpXbFAyKf7bFnu1gJMWW7dC62D3oyxb1obMnyf8AaRp4dQ</recordid><startdate>20211201</startdate><enddate>20211201</enddate><creator>de la Fuente, Rebeca</creator><creator>Drótos, Gábor</creator><creator>Hernández-García, Emilio</creator><creator>López, Cristóbal</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-1536-5689</orcidid><orcidid>https://orcid.org/0000-0002-9568-8287</orcidid><orcidid>https://orcid.org/0000-0002-0900-5188</orcidid><orcidid>https://orcid.org/0000-0002-3445-4284</orcidid></search><sort><creationdate>20211201</creationdate><title>Network and geometric characterization of three-dimensional fluid transport between two layers</title><author>de la Fuente, Rebeca ; Drótos, Gábor ; Hernández-García, Emilio ; López, Cristóbal</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c255t-a397e60b76d5fe0e191ff1c1e4b0a5b993edd0f58db7172036b2deb77a956f903</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>de la Fuente, Rebeca</creatorcontrib><creatorcontrib>Drótos, Gábor</creatorcontrib><creatorcontrib>Hernández-García, Emilio</creatorcontrib><creatorcontrib>López, Cristóbal</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Physical review. E</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>de la Fuente, Rebeca</au><au>Drótos, Gábor</au><au>Hernández-García, Emilio</au><au>López, Cristóbal</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Network and geometric characterization of three-dimensional fluid transport between two layers</atitle><jtitle>Physical review. E</jtitle><addtitle>Phys Rev E</addtitle><date>2021-12-01</date><risdate>2021</risdate><volume>104</volume><issue>6-2</issue><spage>065111</spage><epage>065111</epage><pages>065111-065111</pages><artnum>065111</artnum><issn>2470-0045</issn><eissn>2470-0053</eissn><abstract>We consider transport in a fluid flow of arbitrary complexity but with a dominant flow direction. One of the situations in which this occurs is when describing by an effective flow the dynamics of sufficiently small particles immersed in a turbulent fluid and vertically sinking because of their weight. We develop a formalism characterizing the dynamics of particles released from one layer of fluid and arriving in a second one after traveling along the dominant direction. The main ingredient in our study is the definition of a two-layer map that describes the Lagrangian transport between both layers. We combine geometric approaches and probabilistic network descriptions to analyze the two-layer map. From the geometric point of view, we express the properties of lines, surfaces, and densities transported by the flow in terms of singular values related to Lyapunov exponents, and define a specific quantifier, the finite depth Lyapunov exponent. Within the network approach, degrees and an entropy are considered to characterize transport. We also provide relationships between both methodologies. The formalism is illustrated with numerical results for a modification of the ABC flow, a model commonly studied to characterize three-dimensional chaotic advection.</abstract><cop>United States</cop><pmid>35030886</pmid><doi>10.1103/PhysRevE.104.065111</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-1536-5689</orcidid><orcidid>https://orcid.org/0000-0002-9568-8287</orcidid><orcidid>https://orcid.org/0000-0002-0900-5188</orcidid><orcidid>https://orcid.org/0000-0002-3445-4284</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2470-0045
ispartof Physical review. E, 2021-12, Vol.104 (6-2), p.065111-065111, Article 065111
issn 2470-0045
2470-0053
language eng
recordid cdi_proquest_miscellaneous_2620084331
source American Physical Society Journals
title Network and geometric characterization of three-dimensional fluid transport between two layers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T00%3A21%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Network%20and%20geometric%20characterization%20of%20three-dimensional%20fluid%20transport%20between%20two%20layers&rft.jtitle=Physical%20review.%20E&rft.au=de%20la%20Fuente,%20Rebeca&rft.date=2021-12-01&rft.volume=104&rft.issue=6-2&rft.spage=065111&rft.epage=065111&rft.pages=065111-065111&rft.artnum=065111&rft.issn=2470-0045&rft.eissn=2470-0053&rft_id=info:doi/10.1103/PhysRevE.104.065111&rft_dat=%3Cproquest_cross%3E2620084331%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2620084331&rft_id=info:pmid/35030886&rfr_iscdi=true