Network and geometric characterization of three-dimensional fluid transport between two layers
We consider transport in a fluid flow of arbitrary complexity but with a dominant flow direction. One of the situations in which this occurs is when describing by an effective flow the dynamics of sufficiently small particles immersed in a turbulent fluid and vertically sinking because of their weig...
Gespeichert in:
Veröffentlicht in: | Physical review. E 2021-12, Vol.104 (6-2), p.065111-065111, Article 065111 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 065111 |
---|---|
container_issue | 6-2 |
container_start_page | 065111 |
container_title | Physical review. E |
container_volume | 104 |
creator | de la Fuente, Rebeca Drótos, Gábor Hernández-García, Emilio López, Cristóbal |
description | We consider transport in a fluid flow of arbitrary complexity but with a dominant flow direction. One of the situations in which this occurs is when describing by an effective flow the dynamics of sufficiently small particles immersed in a turbulent fluid and vertically sinking because of their weight. We develop a formalism characterizing the dynamics of particles released from one layer of fluid and arriving in a second one after traveling along the dominant direction. The main ingredient in our study is the definition of a two-layer map that describes the Lagrangian transport between both layers. We combine geometric approaches and probabilistic network descriptions to analyze the two-layer map. From the geometric point of view, we express the properties of lines, surfaces, and densities transported by the flow in terms of singular values related to Lyapunov exponents, and define a specific quantifier, the finite depth Lyapunov exponent. Within the network approach, degrees and an entropy are considered to characterize transport. We also provide relationships between both methodologies. The formalism is illustrated with numerical results for a modification of the ABC flow, a model commonly studied to characterize three-dimensional chaotic advection. |
doi_str_mv | 10.1103/PhysRevE.104.065111 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2620084331</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2620084331</sourcerecordid><originalsourceid>FETCH-LOGICAL-c255t-a397e60b76d5fe0e191ff1c1e4b0a5b993edd0f58db7172036b2deb77a956f903</originalsourceid><addsrcrecordid>eNo9kN1LwzAUxYMobsz9BYLk0ZfOm6ZJ20cZ8wOGiuirJW1uXLVtZpIq86-3so-neziccy78CDlnMGMM-NXTauOf8XsxY5DMQArG2BEZx0kKEYDgxwediBGZev8BAExCnrL4lIy4AA5ZJsfk7QHDj3WfVHWavqNtMbi6otVKOVUFdPWvCrXtqDU0rBxipOsWOz9YqqGm6WtNg1OdX1sXaDlsIXZ0WKSN2qDzZ-TEqMbjdHcn5PVm8TK_i5aPt_fz62VUxUKESPE8RQllKrUwCMhyZgyrGCYlKFHmOUetwYhMlylLY-CyjDWWaapyIU0OfEIut7trZ7969KFoa19h06gObe-LWMYAWcI5G6J8G62c9d6hKdaubpXbFAyKf7bFnu1gJMWW7dC62D3oyxb1obMnyf8AaRp4dQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2620084331</pqid></control><display><type>article</type><title>Network and geometric characterization of three-dimensional fluid transport between two layers</title><source>American Physical Society Journals</source><creator>de la Fuente, Rebeca ; Drótos, Gábor ; Hernández-García, Emilio ; López, Cristóbal</creator><creatorcontrib>de la Fuente, Rebeca ; Drótos, Gábor ; Hernández-García, Emilio ; López, Cristóbal</creatorcontrib><description>We consider transport in a fluid flow of arbitrary complexity but with a dominant flow direction. One of the situations in which this occurs is when describing by an effective flow the dynamics of sufficiently small particles immersed in a turbulent fluid and vertically sinking because of their weight. We develop a formalism characterizing the dynamics of particles released from one layer of fluid and arriving in a second one after traveling along the dominant direction. The main ingredient in our study is the definition of a two-layer map that describes the Lagrangian transport between both layers. We combine geometric approaches and probabilistic network descriptions to analyze the two-layer map. From the geometric point of view, we express the properties of lines, surfaces, and densities transported by the flow in terms of singular values related to Lyapunov exponents, and define a specific quantifier, the finite depth Lyapunov exponent. Within the network approach, degrees and an entropy are considered to characterize transport. We also provide relationships between both methodologies. The formalism is illustrated with numerical results for a modification of the ABC flow, a model commonly studied to characterize three-dimensional chaotic advection.</description><identifier>ISSN: 2470-0045</identifier><identifier>EISSN: 2470-0053</identifier><identifier>DOI: 10.1103/PhysRevE.104.065111</identifier><identifier>PMID: 35030886</identifier><language>eng</language><publisher>United States</publisher><ispartof>Physical review. E, 2021-12, Vol.104 (6-2), p.065111-065111, Article 065111</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c255t-a397e60b76d5fe0e191ff1c1e4b0a5b993edd0f58db7172036b2deb77a956f903</cites><orcidid>0000-0003-1536-5689 ; 0000-0002-9568-8287 ; 0000-0002-0900-5188 ; 0000-0002-3445-4284</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,2863,2864,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35030886$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>de la Fuente, Rebeca</creatorcontrib><creatorcontrib>Drótos, Gábor</creatorcontrib><creatorcontrib>Hernández-García, Emilio</creatorcontrib><creatorcontrib>López, Cristóbal</creatorcontrib><title>Network and geometric characterization of three-dimensional fluid transport between two layers</title><title>Physical review. E</title><addtitle>Phys Rev E</addtitle><description>We consider transport in a fluid flow of arbitrary complexity but with a dominant flow direction. One of the situations in which this occurs is when describing by an effective flow the dynamics of sufficiently small particles immersed in a turbulent fluid and vertically sinking because of their weight. We develop a formalism characterizing the dynamics of particles released from one layer of fluid and arriving in a second one after traveling along the dominant direction. The main ingredient in our study is the definition of a two-layer map that describes the Lagrangian transport between both layers. We combine geometric approaches and probabilistic network descriptions to analyze the two-layer map. From the geometric point of view, we express the properties of lines, surfaces, and densities transported by the flow in terms of singular values related to Lyapunov exponents, and define a specific quantifier, the finite depth Lyapunov exponent. Within the network approach, degrees and an entropy are considered to characterize transport. We also provide relationships between both methodologies. The formalism is illustrated with numerical results for a modification of the ABC flow, a model commonly studied to characterize three-dimensional chaotic advection.</description><issn>2470-0045</issn><issn>2470-0053</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNo9kN1LwzAUxYMobsz9BYLk0ZfOm6ZJ20cZ8wOGiuirJW1uXLVtZpIq86-3so-neziccy78CDlnMGMM-NXTauOf8XsxY5DMQArG2BEZx0kKEYDgxwediBGZev8BAExCnrL4lIy4AA5ZJsfk7QHDj3WfVHWavqNtMbi6otVKOVUFdPWvCrXtqDU0rBxipOsWOz9YqqGm6WtNg1OdX1sXaDlsIXZ0WKSN2qDzZ-TEqMbjdHcn5PVm8TK_i5aPt_fz62VUxUKESPE8RQllKrUwCMhyZgyrGCYlKFHmOUetwYhMlylLY-CyjDWWaapyIU0OfEIut7trZ7969KFoa19h06gObe-LWMYAWcI5G6J8G62c9d6hKdaubpXbFAyKf7bFnu1gJMWW7dC62D3oyxb1obMnyf8AaRp4dQ</recordid><startdate>20211201</startdate><enddate>20211201</enddate><creator>de la Fuente, Rebeca</creator><creator>Drótos, Gábor</creator><creator>Hernández-García, Emilio</creator><creator>López, Cristóbal</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-1536-5689</orcidid><orcidid>https://orcid.org/0000-0002-9568-8287</orcidid><orcidid>https://orcid.org/0000-0002-0900-5188</orcidid><orcidid>https://orcid.org/0000-0002-3445-4284</orcidid></search><sort><creationdate>20211201</creationdate><title>Network and geometric characterization of three-dimensional fluid transport between two layers</title><author>de la Fuente, Rebeca ; Drótos, Gábor ; Hernández-García, Emilio ; López, Cristóbal</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c255t-a397e60b76d5fe0e191ff1c1e4b0a5b993edd0f58db7172036b2deb77a956f903</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>de la Fuente, Rebeca</creatorcontrib><creatorcontrib>Drótos, Gábor</creatorcontrib><creatorcontrib>Hernández-García, Emilio</creatorcontrib><creatorcontrib>López, Cristóbal</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Physical review. E</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>de la Fuente, Rebeca</au><au>Drótos, Gábor</au><au>Hernández-García, Emilio</au><au>López, Cristóbal</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Network and geometric characterization of three-dimensional fluid transport between two layers</atitle><jtitle>Physical review. E</jtitle><addtitle>Phys Rev E</addtitle><date>2021-12-01</date><risdate>2021</risdate><volume>104</volume><issue>6-2</issue><spage>065111</spage><epage>065111</epage><pages>065111-065111</pages><artnum>065111</artnum><issn>2470-0045</issn><eissn>2470-0053</eissn><abstract>We consider transport in a fluid flow of arbitrary complexity but with a dominant flow direction. One of the situations in which this occurs is when describing by an effective flow the dynamics of sufficiently small particles immersed in a turbulent fluid and vertically sinking because of their weight. We develop a formalism characterizing the dynamics of particles released from one layer of fluid and arriving in a second one after traveling along the dominant direction. The main ingredient in our study is the definition of a two-layer map that describes the Lagrangian transport between both layers. We combine geometric approaches and probabilistic network descriptions to analyze the two-layer map. From the geometric point of view, we express the properties of lines, surfaces, and densities transported by the flow in terms of singular values related to Lyapunov exponents, and define a specific quantifier, the finite depth Lyapunov exponent. Within the network approach, degrees and an entropy are considered to characterize transport. We also provide relationships between both methodologies. The formalism is illustrated with numerical results for a modification of the ABC flow, a model commonly studied to characterize three-dimensional chaotic advection.</abstract><cop>United States</cop><pmid>35030886</pmid><doi>10.1103/PhysRevE.104.065111</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-1536-5689</orcidid><orcidid>https://orcid.org/0000-0002-9568-8287</orcidid><orcidid>https://orcid.org/0000-0002-0900-5188</orcidid><orcidid>https://orcid.org/0000-0002-3445-4284</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2470-0045 |
ispartof | Physical review. E, 2021-12, Vol.104 (6-2), p.065111-065111, Article 065111 |
issn | 2470-0045 2470-0053 |
language | eng |
recordid | cdi_proquest_miscellaneous_2620084331 |
source | American Physical Society Journals |
title | Network and geometric characterization of three-dimensional fluid transport between two layers |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T00%3A21%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Network%20and%20geometric%20characterization%20of%20three-dimensional%20fluid%20transport%20between%20two%20layers&rft.jtitle=Physical%20review.%20E&rft.au=de%20la%20Fuente,%20Rebeca&rft.date=2021-12-01&rft.volume=104&rft.issue=6-2&rft.spage=065111&rft.epage=065111&rft.pages=065111-065111&rft.artnum=065111&rft.issn=2470-0045&rft.eissn=2470-0053&rft_id=info:doi/10.1103/PhysRevE.104.065111&rft_dat=%3Cproquest_cross%3E2620084331%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2620084331&rft_id=info:pmid/35030886&rfr_iscdi=true |