Network and geometric characterization of three-dimensional fluid transport between two layers

We consider transport in a fluid flow of arbitrary complexity but with a dominant flow direction. One of the situations in which this occurs is when describing by an effective flow the dynamics of sufficiently small particles immersed in a turbulent fluid and vertically sinking because of their weig...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. E 2021-12, Vol.104 (6-2), p.065111-065111, Article 065111
Hauptverfasser: de la Fuente, Rebeca, Drótos, Gábor, Hernández-García, Emilio, López, Cristóbal
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider transport in a fluid flow of arbitrary complexity but with a dominant flow direction. One of the situations in which this occurs is when describing by an effective flow the dynamics of sufficiently small particles immersed in a turbulent fluid and vertically sinking because of their weight. We develop a formalism characterizing the dynamics of particles released from one layer of fluid and arriving in a second one after traveling along the dominant direction. The main ingredient in our study is the definition of a two-layer map that describes the Lagrangian transport between both layers. We combine geometric approaches and probabilistic network descriptions to analyze the two-layer map. From the geometric point of view, we express the properties of lines, surfaces, and densities transported by the flow in terms of singular values related to Lyapunov exponents, and define a specific quantifier, the finite depth Lyapunov exponent. Within the network approach, degrees and an entropy are considered to characterize transport. We also provide relationships between both methodologies. The formalism is illustrated with numerical results for a modification of the ABC flow, a model commonly studied to characterize three-dimensional chaotic advection.
ISSN:2470-0045
2470-0053
DOI:10.1103/PhysRevE.104.065111