Supermode noise suppression with polarization-multiplexed dual-loop for active mode-locking optoelectronic oscillator

The active mode-locking (AML) technique has been widely used in erbium-doped fiber lasers to generate picosecond pulse trains. Here we propose a novel active mode-locking dual-loop optoelectronic oscillator (AML-DL-OEO), which can generate microwave frequency comb (MFC) signals with adjustable comb...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Optics letters 2022-01, Vol.47 (2), p.413-416
Hauptverfasser: Li, Yan, Wang, Muguang, Zhang, Jing, Mu, Hongqian, Wang, Chuncan, Yan, Fengping
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The active mode-locking (AML) technique has been widely used in erbium-doped fiber lasers to generate picosecond pulse trains. Here we propose a novel active mode-locking dual-loop optoelectronic oscillator (AML-DL-OEO), which can generate microwave frequency comb (MFC) signals with adjustable comb spacings. Based on this scheme, the order of harmonic mode-locking is dramatically decreased for a certain AML driving frequency compared with a single-loop AML-OEO. Thus, the supermode noise caused by harmonic mode-locking can be efficiently suppressed. In addition, the sidemodes are well suppressed by the dual-loop architecture. An experiment is performed. MFC signals with different comb spacings are generated under fundamental or harmonic mode-locking states. AML-DL-OEO systems with different length differences between two loops are implemented to evaluate supermode noise suppression capability. The performance of the generated MFC signals is recorded and analyzed.
ISSN:0146-9592
1539-4794
DOI:10.1364/OL.440663