Temperature-Dependent Bending Rigidity of AB-Stacked Bilayer Graphene
The change in bending rigidity with temperature κ(T) for 2D materials is highly debated: theoretical works predict both increase and decrease. Here we present measurements of κ(T), for a 2D material: AB-stacked bilayer graphene. We obtain κ(T) from phonon dispersion curves measured with helium atom...
Gespeichert in:
Veröffentlicht in: | Physical review letters 2021-12, Vol.127 (26), p.266102-266102 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The change in bending rigidity with temperature κ(T) for 2D materials is highly debated: theoretical works predict both increase and decrease. Here we present measurements of κ(T), for a 2D material: AB-stacked bilayer graphene. We obtain κ(T) from phonon dispersion curves measured with helium atom scattering in the temperature range 320-400 K. We find that the bending rigidity increases with temperature. Assuming a linear dependence over the measured temperature region we obtain κ(T)=[(1.3±0.1)+(0.006±0.001)T/K] eV by fitting the data. We discuss this result in the context of existing predictions and room temperature measurements. |
---|---|
ISSN: | 1079-7114 |
DOI: | 10.1103/PhysRevLett.127.266102 |