Metal ion modulation triggers dielectric double switching and green fluorescence in A2MX4-type compounds

Multifunctional switching materials show great potential for applications in sensors, smart switches, and other fields due to their ability to integrate different physical channels in one single device. However, multifunctional responsive materials with multiple switching and luminescence properties...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Dalton transactions : an international journal of inorganic chemistry 2022-02, Vol.51 (5), p.2005-2011
Hauptverfasser: Shao, Ting, Rui-Ying, Ren, Pei-Zhi Huang, Hao-Fei Ni, Chang-Yuan, Su, Da-Wei, Fu, Li-Yan, Xie, Hai-Feng, Lu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Multifunctional switching materials show great potential for applications in sensors, smart switches, and other fields due to their ability to integrate different physical channels in one single device. However, multifunctional responsive materials with multiple switching and luminescence properties have rarely been reported. Here, we report three organic–inorganic hybrids: [TMAA]2[CoCl4] (compound 1), [TMAA]2[CdBr4] (compound 2) and [TMAA]2[MnCl4] (compound 3). Compound 1 and compound 2 undergo two reversible phase transitions at high temperature (328.95/359.25 K and 350.45/393.15 K, respectively). Since the inorganic skeleton has a strong influence on the luminescence properties of such structured substances, Cd and Co were replaced with Mn, after which compound 3 was obtained as expected. The above strategy triggered bright green luminescence with a quantum yield of 35.19%, and significantly increased the phase transition temperature of compound 3 to above 400 K. The above results show that the regulation of the inorganic skeleton provides a new strategy for researchers to develop dual phase change/luminous materials.
ISSN:1477-9226
1477-9234
DOI:10.1039/d1dt03948b