Trichostatin A inhibits dendritic cell maturation through down-regulating NF—κ B (p65) pathway

Background Recent evidence suggested that histone deacetylase inhibitor (HDACi) could inhibit dendritic cell (DC) maturation. However, the mechanism is unclear. Here, we aimed to study whether Trichostatin A (TSA), the most widely studied HDACi, inhibits the maturation of DCs by down-regulating NF-κ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular biology reports 2022-04, Vol.49 (4), p.2619-2627
Hauptverfasser: Yu, Ying, Liu, Bing, Chen, Siyan, Wang, Jianxun, Chen, Feng, Liu, Tian, Jiang, Nan, Chen, Wensi, Weng, Shengbei, Cai, Xiaoxiao, Xiang, Daoman
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Background Recent evidence suggested that histone deacetylase inhibitor (HDACi) could inhibit dendritic cell (DC) maturation. However, the mechanism is unclear. Here, we aimed to study whether Trichostatin A (TSA), the most widely studied HDACi, inhibits the maturation of DCs by down-regulating NF-κB (p65) pathway. Methods and results Mouse bone marrow-derived DCs were cultured. Lipopolysaccharide (LPS) was applied as stimulation for maturation. Triptolide (TTL) was applied as p65 inhibitor. Microphotography and flow cytometry showed that TSA and p65 inhibitor separately inhibited the maturation of DCs stimulated by LPS from the aspects of cell morphology and cell phenotype. Mixed lymphocyte reaction test and ELISA showed that TSA and p65 inhibitor synergistically inhibited the proliferation of T lymphocytes stimulated by DCs, reduced the secretion of pro-inflammatory cytokine IL-12 and elevated the secretion of anti-inflammatory cytokine IL-10. Western blot and RT-qPCR showed that TSA down-regulated the expression of phosphorylated IκBα, phosphorylated-p65, Ikkβ and Ikkγ, suggesting TSA down-regulates NF-κB (p65) pathway. Conclusions TSA inhibits DC maturation through down-regulating NF-κB (p65) pathway.
ISSN:0301-4851
1573-4978
1573-4978
DOI:10.1007/s11033-021-07065-7