The structures of two polysaccharides from Angelica sinensis and their effects on hepatic insulin resistance through blocking RAGE
This study found two novel homogeneous polysaccharides from Angelica sinensis, APS-1I and APS-2II, binding to RAGE with a dissociation constant of 2.02 ± 0.2 and 85.92 ± 0.2 μM, respectively. APS-1I is a 17.0 kDa heteropolysaccharide, whose backbone is composed of α-1,6-Glcp, α-1,3,6-Glcp, α-1,2-Glc...
Gespeichert in:
Veröffentlicht in: | Carbohydrate polymers 2022-03, Vol.280, p.119001-119001, Article 119001 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This study found two novel homogeneous polysaccharides from Angelica sinensis, APS-1I and APS-2II, binding to RAGE with a dissociation constant of 2.02 ± 0.2 and 85.92 ± 0.2 μM, respectively. APS-1I is a 17.0 kDa heteropolysaccharide, whose backbone is composed of α-1,6-Glcp, α-1,3,6-Glcp, α-1,2-Glcp, α-1,4-Galp, and α-1,3-Rhap, and whose two branches contain α-1,3,5-Araf, α-1,3-Araf, α-1,4-Galp, β-1,3-Galp, and β-1,4-Glcp. APS-2II is a 10.0 kDa linear glucan, that contains α-1,6-Glcp, α-1,3-Glcp, α-1,2-Glcp, and α-T-Glcp. In vitro, APS-1I demonstrated better promotion on glucose absorption and stronger repression on p-IRS-1 (Ser307), p-IRS-2 (Ser731), p-JNK, and p-P38 than APS-2II in insulin resistance (IR)-HepG2 cells. Furthermore, APS-1I treatment couldn't further decrease the inhibition on the phosphorylation of JNK and P38 produced by RAGE siRNA in IR-HepG2 cells. In vivo, APS-1I markedly improved IR and reversed the livers RAGE-JNK/p38-IRS signaling in high-fat-diet and streptozotocin-induced diabetic rats, suggesting that APS-1I could be a potential agent for improving IR in type 2 diabetes.
[Display omitted] |
---|---|
ISSN: | 0144-8617 1879-1344 |
DOI: | 10.1016/j.carbpol.2021.119001 |