Mitochondrial Dysfunction and Antioxidation Dyshomeostasis-Enhanced Tumor Starvation Synergistic Chemotherapy Achieved using a Metal–Organic Framework-Based Nano-Enzyme Reactor
Exploiting zeolitic imidazolate framework (ZIF)-based nanoparticles to synergistically enhance starvation-combined chemotherapy strategies remains an urgent demand. Herein, glucose oxidase (GOX) and doxorubicin (DOX) were facilely incorporated into ZIFs for starvation-combined chemotherapy. The as-p...
Gespeichert in:
Veröffentlicht in: | ACS applied materials & interfaces 2022-01, Vol.14 (3), p.3675-3684 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Exploiting zeolitic imidazolate framework (ZIF)-based nanoparticles to synergistically enhance starvation-combined chemotherapy strategies remains an urgent demand. Herein, glucose oxidase (GOX) and doxorubicin (DOX) were facilely incorporated into ZIFs for starvation-combined chemotherapy. The as-prepared DOX/GOX-loaded ZIF (DGZ) exhibited uniform size with good dispersity, effective protection of the GOX activity, and stable delivery of the drugs into tumor. Correspondingly, it could achieve the glucose- and pH-responsive degradation and thus the controllable drug release. As a result, the acidification of glucose accompanied with reactive oxygen species (ROS) production was observed for the starvation-enhanced chemotherapy and the improved degradation. Most importantly, adjustable Zn2+ release was achieved with the biodegradation of DGZ, which thus contributed to an augmented therapeutic outcome via the Zn2+-induced mitochondrial dysfunction and antioxidation dyshomeostasis. These findings, synergized with the enhancement of starvation-combined chemotherapy by inhibiting the mitochondrial energy metabolism and boosting the ROS accumulation using pristine ZIF-based nanoparticles, provide a new insight into the metal–organic framework-based nanomedicine for further cancer treatments. |
---|---|
ISSN: | 1944-8244 1944-8252 |
DOI: | 10.1021/acsami.1c18654 |