Soil ecoenzymatic stoichiometry reveals microbial phosphorus limitation after vegetation restoration on the Loess Plateau, China

Exploring the limitations of soil microbial nutrient metabolism would help to understand the adaptability and response mechanisms of soil microbes in semi-arid ecosystems. Soil ecoenzymatic stoichiometry is conducive to quantifying the nutrient limitations of microorganisms. To quantify microbial nu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Science of the total environment 2022-04, Vol.815, p.152918-152918, Article 152918
Hauptverfasser: Xu, Miaoping, Li, Wenjie, Wang, Jiayi, Zhu, Yufan, Feng, Yongzhong, Yang, Gaihe, Zhang, Wei, Han, Xinhui
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Exploring the limitations of soil microbial nutrient metabolism would help to understand the adaptability and response mechanisms of soil microbes in semi-arid ecosystems. Soil ecoenzymatic stoichiometry is conducive to quantifying the nutrient limitations of microorganisms. To quantify microbial nutrient limitation during plant restoration, we measured soil physicochemical properties, microbial biomass, and the activities of four enzymes (ꞵ-1,4-glucosidase, leucine aminopeptidase, ꞵ-1,4-N-acetylglucosaminidase, and alkaline phosphatase) in the soils of the northern Loess Plateau. Vegetation restoration patterns significantly affected soil properties, microbial biomass, enzymatic activity, and associated stoichiometry. Soil enzymatic activity increased significantly after vegetation restoration, especially in Robinia pseudoacacia plantations (RP). Correlation analysis showed that soil nutrients (C and N), moisture and pH were significantly correlated with ecoenzymatic activities and their stoichiometries. Vector-threshold element ratio (VT) model analysis revealed that microbial nutrient metabolism was limited by P, and soil microbial C limitation was significantly weakened after vegetation restoration, particularly in RP. Correlation analysis indicated that microbial nutrient limitations represented by the VT model were significantly correlated with soil moisture, nutrients, and associated stoichiometry. Therefore, the soil microbial community was mainly limited by P rather than N in vegetation restoration on the Loess Plateau via the VT model, and this limitation was primarily associated with the variation in soil properties. In addition, the soil microbial C limitation was significantly negatively correlated with microbial nutrient (P or N) limitation, which illustrated that soil microbial nutrient metabolism has strong stoichiometric homeostasis. [Display omitted] •Microbial nutrient metabolism was limited by P after afforestation.•Soil microbial C limitation was significantly weakened after vegetation restoration.•Microbial C limitation was negatively correlated with microbial P vs. N limitation.•Vector-TER model is suitable for evaluating microbial metabolism nutrient limitation.
ISSN:0048-9697
1879-1026
DOI:10.1016/j.scitotenv.2022.152918