Synthesis of Octachloro- and Octaazido-Functionalized T8‑Cages and Application to Recyclable Palladium Catalyst
Unprecedented T8-cages bearing eight chloromethyldimethylsilylethyl substituents were obtained in excellent yield from the readily and commercially available octavinylsilsesquioxane. The chloro groups can be quantitatively substituted by azido ones to yield the corresponding octaazido T8 without rea...
Gespeichert in:
Veröffentlicht in: | Inorganic chemistry 2022-01, Vol.61 (3), p.1495-1503 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Unprecedented T8-cages bearing eight chloromethyldimethylsilylethyl substituents were obtained in excellent yield from the readily and commercially available octavinylsilsesquioxane. The chloro groups can be quantitatively substituted by azido ones to yield the corresponding octaazido T8 without rearrangement of the cage. The syntheses of both functionalizable POSSs are scalable (gram-scale). The azido-functionalized T8 compound constitutes a versatile building block able to undergo copper-catalyzed azide–alkyne [3 + 2] cycloaddition. As a proof of concept, it was allowed to react with 2-ethynylpyridine to give rise to a multidentate ligand bearing eight 2-pyridyl-triazole moieties (N,N-pincers). The coordination of the eight N,N-bidentate ligands to palladium(II) led to the corresponding octa-palladium complex shown to successfully promote the coupling reaction between anisole and phenylboronic acid. The low solubility of this catalytic complex in the reaction medium enabled (or facilitated or made possible) its straightforward recovery and recycling with four cycles with no loss of activity. |
---|---|
ISSN: | 0020-1669 1520-510X |
DOI: | 10.1021/acs.inorgchem.1c03209 |