Principles of particle selection for dispersion-strengthened copper

A new fundamental approach to the design of high strength, high thermal conductivity dispersion-strengthened copper alloys for applications in actively cooled structures is developed. This concept is based on a consideration of the basic principles of thermodynamics, kinetics and mechanical properti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials science & engineering. A, Structural materials : properties, microstructure and processing Structural materials : properties, microstructure and processing, 1993-11, Vol.171 (1), p.115-125
Hauptverfasser: Groza, J.R., Gibeling, J.C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A new fundamental approach to the design of high strength, high thermal conductivity dispersion-strengthened copper alloys for applications in actively cooled structures is developed. This concept is based on a consideration of the basic principles of thermodynamics, kinetics and mechanical properties. The design requirements for these materials include a uniform distribution of fine particles for creep and fatigue resistance, a high thermal conductivity, thermodynamic and chemical stability at temperatures up to 1300 K, a small difference in the coefficients of thermal expansion between the particle and matrix, and low particle coarsening rates at the processing and service temperatures. The theory for creep of dispersion-strengthened metals developed by Rösler and Arzt is used to predict the optimum particle size for a given service temperature and to illustrate the need for a high interfacial energy. Resistance to coarsening leads to a requirement for low diffusivity and solubility of particle constituent elements in the matrix. Based on the needs for a low difference in the coefficients of thermal expansion to minimize thermal-mechanical fatigue damage and low diffusivity and solubility of the constituent elements, several candidate ceramic phases are compared using a weighted property index scheme. The results of this quantitative comparison suggest that CeO 2, MgO, CaO and possibly Y 2O 3 may be good candidates for the dispersed phase in a copper matrix.
ISSN:0921-5093
1873-4936
DOI:10.1016/0921-5093(93)90398-X