Self-Strengthening, Self-Welding, Shape Memory, and Recyclable Polybutadiene-Based Material Driven by Dual-Dynamic Units

A covalent adaptable network can endow rubber materials with recyclability and reprocessability and is expected to alleviate black pollution caused by end-of-life rubber. However, the loss of traditional vulcanization systems severely sacrifices their strength, and the tensile strength in the curren...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2022-01, Vol.14 (2), p.3344-3355
Hauptverfasser: Yang, Yinxin, Huang, Lingyun, Wu, Ruiyao, Niu, Zhen, Fan, Weifeng, Dai, Quanquan, Cui, Long, He, Jianyun, Bai, Chenxi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3355
container_issue 2
container_start_page 3344
container_title ACS applied materials & interfaces
container_volume 14
creator Yang, Yinxin
Huang, Lingyun
Wu, Ruiyao
Niu, Zhen
Fan, Weifeng
Dai, Quanquan
Cui, Long
He, Jianyun
Bai, Chenxi
description A covalent adaptable network can endow rubber materials with recyclability and reprocessability and is expected to alleviate black pollution caused by end-of-life rubber. However, the loss of traditional vulcanization systems severely sacrifices their strength, and the tensile strength in the current study rarely exceeds 10 MPa unless fillers are added. In this work, we proposed a self-strengthening process based on dual-dynamic units (imine and disulfide), briefly, under heating, phenylsulfur radicals generated from aromatic disulfide bonds can react with double bonds (mostly vinyl) and/or couple with allyl sites, thus reforming a stronger cross-linked network. The neighboring imine unit is not affected and provides excellent thermal reprocessability and chemical recyclability. The result shows that the tensile strength can reach 19.27 MPa via self-strengthening without adding fillers or any other additives, and this ultra-high-strength is much higher than those of all known recyclable polybutadiene-based rubber materials. In addition, the material also has malleability, shape memory, and self-welding properties. By doping carbon nanotubes, a recyclable conductive composite can also be achieved. In general, we envision that this enhanced strategy has great potential to be generalized for all elastomers containing double bonds (such as styrene–butadiene rubber, nitrile rubber, isoprene rubber, and their derivatives). The reprocessability and self-welding are practical for on-site assembly or repair of composite parts and extend the service life of materials.
doi_str_mv 10.1021/acsami.1c23007
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2617275391</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2617275391</sourcerecordid><originalsourceid>FETCH-LOGICAL-a396t-254cf012639f2291973a467554f504cb572f08cb12de6cef680d04ee00735a2b3</originalsourceid><addsrcrecordid>eNp1kMlOwzAURS0EomXYskReIkSKx6RZQsskFYGAimXkOC9tKscpdoLI3xNI6Y6VB5179d5B6ISSESWMXirtVVmMqGackGgHDWksRDBmku1u70IM0IH3K0JCzojcRwMu4nHMmByir1cwefBaO7CLegm2sIsL_Pv3DibrX0u1BvwIZeXaC6xshl9At9qo1AB-rkybNrXKCrAQXCsPGX5UNbhCGTx1xSdYnLZ42igTTFvbzarx3Ba1P0J7uTIejjfnIZrf3rxN7oPZ093D5GoWKB6HdcCk0DmhLORxzlhM44grEUZSilwSoVMZsZyMdUpZBqGGPByTjAiATgaXiqX8EJ31vWtXfTTg66QsvAZjlIWq8QkLacQiyWPaoaMe1a7y3kGerF1RKtcmlCQ_tpPedrKx3QVON91NWkK2xf_0dsB5D3TBZFU1znar_tf2DVrEiXY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2617275391</pqid></control><display><type>article</type><title>Self-Strengthening, Self-Welding, Shape Memory, and Recyclable Polybutadiene-Based Material Driven by Dual-Dynamic Units</title><source>American Chemical Society Journals</source><creator>Yang, Yinxin ; Huang, Lingyun ; Wu, Ruiyao ; Niu, Zhen ; Fan, Weifeng ; Dai, Quanquan ; Cui, Long ; He, Jianyun ; Bai, Chenxi</creator><creatorcontrib>Yang, Yinxin ; Huang, Lingyun ; Wu, Ruiyao ; Niu, Zhen ; Fan, Weifeng ; Dai, Quanquan ; Cui, Long ; He, Jianyun ; Bai, Chenxi</creatorcontrib><description>A covalent adaptable network can endow rubber materials with recyclability and reprocessability and is expected to alleviate black pollution caused by end-of-life rubber. However, the loss of traditional vulcanization systems severely sacrifices their strength, and the tensile strength in the current study rarely exceeds 10 MPa unless fillers are added. In this work, we proposed a self-strengthening process based on dual-dynamic units (imine and disulfide), briefly, under heating, phenylsulfur radicals generated from aromatic disulfide bonds can react with double bonds (mostly vinyl) and/or couple with allyl sites, thus reforming a stronger cross-linked network. The neighboring imine unit is not affected and provides excellent thermal reprocessability and chemical recyclability. The result shows that the tensile strength can reach 19.27 MPa via self-strengthening without adding fillers or any other additives, and this ultra-high-strength is much higher than those of all known recyclable polybutadiene-based rubber materials. In addition, the material also has malleability, shape memory, and self-welding properties. By doping carbon nanotubes, a recyclable conductive composite can also be achieved. In general, we envision that this enhanced strategy has great potential to be generalized for all elastomers containing double bonds (such as styrene–butadiene rubber, nitrile rubber, isoprene rubber, and their derivatives). The reprocessability and self-welding are practical for on-site assembly or repair of composite parts and extend the service life of materials.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.1c23007</identifier><identifier>PMID: 34989225</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Applications of Polymer, Composite, and Coating Materials</subject><ispartof>ACS applied materials &amp; interfaces, 2022-01, Vol.14 (2), p.3344-3355</ispartof><rights>2022 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a396t-254cf012639f2291973a467554f504cb572f08cb12de6cef680d04ee00735a2b3</citedby><cites>FETCH-LOGICAL-a396t-254cf012639f2291973a467554f504cb572f08cb12de6cef680d04ee00735a2b3</cites><orcidid>0000-0003-1640-3819 ; 0000-0001-5072-5403 ; 0000-0003-0034-915X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.1c23007$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.1c23007$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34989225$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yang, Yinxin</creatorcontrib><creatorcontrib>Huang, Lingyun</creatorcontrib><creatorcontrib>Wu, Ruiyao</creatorcontrib><creatorcontrib>Niu, Zhen</creatorcontrib><creatorcontrib>Fan, Weifeng</creatorcontrib><creatorcontrib>Dai, Quanquan</creatorcontrib><creatorcontrib>Cui, Long</creatorcontrib><creatorcontrib>He, Jianyun</creatorcontrib><creatorcontrib>Bai, Chenxi</creatorcontrib><title>Self-Strengthening, Self-Welding, Shape Memory, and Recyclable Polybutadiene-Based Material Driven by Dual-Dynamic Units</title><title>ACS applied materials &amp; interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>A covalent adaptable network can endow rubber materials with recyclability and reprocessability and is expected to alleviate black pollution caused by end-of-life rubber. However, the loss of traditional vulcanization systems severely sacrifices their strength, and the tensile strength in the current study rarely exceeds 10 MPa unless fillers are added. In this work, we proposed a self-strengthening process based on dual-dynamic units (imine and disulfide), briefly, under heating, phenylsulfur radicals generated from aromatic disulfide bonds can react with double bonds (mostly vinyl) and/or couple with allyl sites, thus reforming a stronger cross-linked network. The neighboring imine unit is not affected and provides excellent thermal reprocessability and chemical recyclability. The result shows that the tensile strength can reach 19.27 MPa via self-strengthening without adding fillers or any other additives, and this ultra-high-strength is much higher than those of all known recyclable polybutadiene-based rubber materials. In addition, the material also has malleability, shape memory, and self-welding properties. By doping carbon nanotubes, a recyclable conductive composite can also be achieved. In general, we envision that this enhanced strategy has great potential to be generalized for all elastomers containing double bonds (such as styrene–butadiene rubber, nitrile rubber, isoprene rubber, and their derivatives). The reprocessability and self-welding are practical for on-site assembly or repair of composite parts and extend the service life of materials.</description><subject>Applications of Polymer, Composite, and Coating Materials</subject><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kMlOwzAURS0EomXYskReIkSKx6RZQsskFYGAimXkOC9tKscpdoLI3xNI6Y6VB5179d5B6ISSESWMXirtVVmMqGackGgHDWksRDBmku1u70IM0IH3K0JCzojcRwMu4nHMmByir1cwefBaO7CLegm2sIsL_Pv3DibrX0u1BvwIZeXaC6xshl9At9qo1AB-rkybNrXKCrAQXCsPGX5UNbhCGTx1xSdYnLZ42igTTFvbzarx3Ba1P0J7uTIejjfnIZrf3rxN7oPZ093D5GoWKB6HdcCk0DmhLORxzlhM44grEUZSilwSoVMZsZyMdUpZBqGGPByTjAiATgaXiqX8EJ31vWtXfTTg66QsvAZjlIWq8QkLacQiyWPaoaMe1a7y3kGerF1RKtcmlCQ_tpPedrKx3QVON91NWkK2xf_0dsB5D3TBZFU1znar_tf2DVrEiXY</recordid><startdate>20220119</startdate><enddate>20220119</enddate><creator>Yang, Yinxin</creator><creator>Huang, Lingyun</creator><creator>Wu, Ruiyao</creator><creator>Niu, Zhen</creator><creator>Fan, Weifeng</creator><creator>Dai, Quanquan</creator><creator>Cui, Long</creator><creator>He, Jianyun</creator><creator>Bai, Chenxi</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-1640-3819</orcidid><orcidid>https://orcid.org/0000-0001-5072-5403</orcidid><orcidid>https://orcid.org/0000-0003-0034-915X</orcidid></search><sort><creationdate>20220119</creationdate><title>Self-Strengthening, Self-Welding, Shape Memory, and Recyclable Polybutadiene-Based Material Driven by Dual-Dynamic Units</title><author>Yang, Yinxin ; Huang, Lingyun ; Wu, Ruiyao ; Niu, Zhen ; Fan, Weifeng ; Dai, Quanquan ; Cui, Long ; He, Jianyun ; Bai, Chenxi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a396t-254cf012639f2291973a467554f504cb572f08cb12de6cef680d04ee00735a2b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Applications of Polymer, Composite, and Coating Materials</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Yinxin</creatorcontrib><creatorcontrib>Huang, Lingyun</creatorcontrib><creatorcontrib>Wu, Ruiyao</creatorcontrib><creatorcontrib>Niu, Zhen</creatorcontrib><creatorcontrib>Fan, Weifeng</creatorcontrib><creatorcontrib>Dai, Quanquan</creatorcontrib><creatorcontrib>Cui, Long</creatorcontrib><creatorcontrib>He, Jianyun</creatorcontrib><creatorcontrib>Bai, Chenxi</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS applied materials &amp; interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Yinxin</au><au>Huang, Lingyun</au><au>Wu, Ruiyao</au><au>Niu, Zhen</au><au>Fan, Weifeng</au><au>Dai, Quanquan</au><au>Cui, Long</au><au>He, Jianyun</au><au>Bai, Chenxi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Self-Strengthening, Self-Welding, Shape Memory, and Recyclable Polybutadiene-Based Material Driven by Dual-Dynamic Units</atitle><jtitle>ACS applied materials &amp; interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2022-01-19</date><risdate>2022</risdate><volume>14</volume><issue>2</issue><spage>3344</spage><epage>3355</epage><pages>3344-3355</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>A covalent adaptable network can endow rubber materials with recyclability and reprocessability and is expected to alleviate black pollution caused by end-of-life rubber. However, the loss of traditional vulcanization systems severely sacrifices their strength, and the tensile strength in the current study rarely exceeds 10 MPa unless fillers are added. In this work, we proposed a self-strengthening process based on dual-dynamic units (imine and disulfide), briefly, under heating, phenylsulfur radicals generated from aromatic disulfide bonds can react with double bonds (mostly vinyl) and/or couple with allyl sites, thus reforming a stronger cross-linked network. The neighboring imine unit is not affected and provides excellent thermal reprocessability and chemical recyclability. The result shows that the tensile strength can reach 19.27 MPa via self-strengthening without adding fillers or any other additives, and this ultra-high-strength is much higher than those of all known recyclable polybutadiene-based rubber materials. In addition, the material also has malleability, shape memory, and self-welding properties. By doping carbon nanotubes, a recyclable conductive composite can also be achieved. In general, we envision that this enhanced strategy has great potential to be generalized for all elastomers containing double bonds (such as styrene–butadiene rubber, nitrile rubber, isoprene rubber, and their derivatives). The reprocessability and self-welding are practical for on-site assembly or repair of composite parts and extend the service life of materials.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>34989225</pmid><doi>10.1021/acsami.1c23007</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-1640-3819</orcidid><orcidid>https://orcid.org/0000-0001-5072-5403</orcidid><orcidid>https://orcid.org/0000-0003-0034-915X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1944-8244
ispartof ACS applied materials & interfaces, 2022-01, Vol.14 (2), p.3344-3355
issn 1944-8244
1944-8252
language eng
recordid cdi_proquest_miscellaneous_2617275391
source American Chemical Society Journals
subjects Applications of Polymer, Composite, and Coating Materials
title Self-Strengthening, Self-Welding, Shape Memory, and Recyclable Polybutadiene-Based Material Driven by Dual-Dynamic Units
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T08%3A20%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Self-Strengthening,%20Self-Welding,%20Shape%20Memory,%20and%20Recyclable%20Polybutadiene-Based%20Material%20Driven%20by%20Dual-Dynamic%20Units&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Yang,%20Yinxin&rft.date=2022-01-19&rft.volume=14&rft.issue=2&rft.spage=3344&rft.epage=3355&rft.pages=3344-3355&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.1c23007&rft_dat=%3Cproquest_cross%3E2617275391%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2617275391&rft_id=info:pmid/34989225&rfr_iscdi=true