Bmmp influences wing morphology by regulating anterior–posterior and proximal–distal axes development

Insect wings are subject to strong selective pressure, resulting in the evolution of remarkably diverse wing morphologies that largely determine flight capacity. However, the genetic basis and regulatory mechanisms underlying wing size and shape development are not well understood. The silkworm Bomb...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Insect science 2022-12, Vol.29 (6), p.1569-1582
Hauptverfasser: Zou, Yun‐Long, Ding, Xin, Zhang, Li, Xu, Li‐Feng, Liang, Shu‐Bo, Hu, Hai, Dai, Fang‐Yin, Tong, Xiao‐Ling
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Insect wings are subject to strong selective pressure, resulting in the evolution of remarkably diverse wing morphologies that largely determine flight capacity. However, the genetic basis and regulatory mechanisms underlying wing size and shape development are not well understood. The silkworm Bombyx mori micropterous (mp) mutant exhibits shortened wing length and enlarged vein spacings, albeit without changes in total wing area. Thus, the mp mutant comprises a valuable genetic resource for studying wing development. In this study, we used molecular mapping to identify the gene responsible for the mp phenotype and designated it Bmmp. Phenotype‐causing mutations were identified as indels and single nucleotide polymorphisms in noncoding regions. These mutations resulted in decreased Bmmp messenger RNA levels and changes in transcript isoform composition. Bmmp null mutants were generated by clustered regularly interspaced short palindromic repeats (CRISPR) / CRISPR‐associated protein 9 and exhibited changed wing shape, similar to mp mutants, and significantly smaller total wing area. By examining the expression of genes critical to wing development in wildtype and Bmmp null mutants, we found that Bmmp exerts its function by coordinately modulating anterior–posterior and proximal–distal axes development. We also studied a Drosophila mp mutant and found that Bmmp is functionally conserved in Drosophila. The Drosophila mp mutant strain exhibits curly wings of reduced size and a complete loss of flight capacity. Our results increase our understanding of the mechanisms underpinning insect wing development and reveal potential targets for pest control.
ISSN:1672-9609
1744-7917
DOI:10.1111/1744-7917.12998