Semi-automatic segmentation of whole-body images in longitudinal studies

We propose a semi-automatic segmentation pipeline designed for longitudinal studies considering structures with large anatomical variability, where expert interactions are required for relevant segmentations. Our pipeline builds on the regularized Fast Marching (rFM) segmentation approach by Risser...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biomedical physics & engineering express 2020-12, Vol.7 (1), p.15014
Hauptverfasser: Grossiord, Eloïse, Risser, Laurent, Kanoun, Salim, Aziza, Richard, Chiron, Harold, Ysebaert, Loïc, Malgouyres, François, Ken, Soléakhéna
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We propose a semi-automatic segmentation pipeline designed for longitudinal studies considering structures with large anatomical variability, where expert interactions are required for relevant segmentations. Our pipeline builds on the regularized Fast Marching (rFM) segmentation approach by Risser et al (2018). It consists in transporting baseline multi-label FM seeds on follow-up images, selecting the relevant ones and finally performing the rFM approach. It showed increased, robust and faster results compared to clinical manual segmentation. Our method was evaluated on 3D synthetic images and patients' whole-body MRI. It allowed a robust and flexible handling of organs longitudinal deformations while considerably reducing manual interventions.
ISSN:2057-1976
2057-1976
DOI:10.1088/2057-1976/abce16