Wear of bulk-fill resin composites

Bulk-fill resin composites are a special group of restorative materials designed to reduce chair time needed to insert a direct composite restoration. However, other factors determine the clinical success of a restorative material. Clinically the major reasons for failure of direct restorations are...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Dental materials 2022-03, Vol.38 (3), p.549-553
Hauptverfasser: Osiewicz, Magdalena A., Werner, Arie, Roeters, Franciscus J.M., Kleverlaan, Cornelis J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Bulk-fill resin composites are a special group of restorative materials designed to reduce chair time needed to insert a direct composite restoration. However, other factors determine the clinical success of a restorative material. Clinically the major reasons for failure of direct restorations are secondary caries and fracture of the restoration or the tooth itself. In the long-term composite resin restorations in posterior teeth may be prone to wear. As bulk-fill materials have their own composition that will determine their mechanical properties, the wear resistance may be affected as well. The aim of this in vitro study was to evaluate the wear of bulk-fill composites in comparison with a conventional hybrid composite. The null hypothesis was that there are no differences between the four bulk-fill materials and one traditional highly filled nanohybrid composite for posterior use when subjected to a two-body wear rate test and hardness measurement. Four bulk-fill composites SDR Smart Dentin Replacement (SDR), X-tra base (XBA), FiltekBulk Fill (FUP), Dual-Curing Bulk Composite (FBFL) and conventional nanohybrid resin composite Grandio (GDO) subjected to a two-body wear test against a stainless steel (SS) antagonist wheel. Scanning Electron Microscopy analysis was performed to detect the surface alterations. Microhardness of all samples was tested (n = 5) with a Vickers diamond indenter (5 indentations in each specimen). One-way ANOVA and Tukey’s post hoc test (P 
ISSN:0109-5641
1879-0097
DOI:10.1016/j.dental.2021.12.138