Mithramycin suppresses tumor growth by regulating CD47 and PD-L1 expression

[Display omitted] Mithramycin A (MIT) has reacquired extensive research attention due to its anti-solid tumor activity and improved pharmacological production. Mechanismly, MIT was broadly used as a c-Myc inhibitor, and c-Myc regulated CD47 and PD-L1 expression which has been demonstrated. However,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biochemical pharmacology 2022-03, Vol.197, p.114894-114894, Article 114894
Hauptverfasser: Gong, Jianhua, Ji, Yuying, Liu, Xiujun, Zheng, Yanbo, Zhen, Yongsu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:[Display omitted] Mithramycin A (MIT) has reacquired extensive research attention due to its anti-solid tumor activity and improved pharmacological production. Mechanismly, MIT was broadly used as a c-Myc inhibitor, and c-Myc regulated CD47 and PD-L1 expression which has been demonstrated. However, how MIT affects immune check-point molecules remains unknown. In this study, we found CD47 expression was higher in melanoma of pan-tissue array. MIT inhibited CD47 expression both in mRNA and protein level in melanoma cells (SK-MEL-28 and B16). MIT inhibited c-Myc, Sp-1 and CD47 expression in a concentration-dependent way. MIT inhibited the surface CD47 expression and promoted the phagocytosis of SK-MEL-28 cells by THP-1 cells. We found MIT inhibited tumor growth in melanoma allograft mice and CD47 expression in tumor mass. We also found MIT upregulated PD-L1 expression in cancer cells possibly via inhibiting PD-L1 ubiquitination, increasing ROS and IFN-γ. Combination of MIT and anti-PD-1 antibody showed enhanced antitumor activity compared to MIT and anti-PD-1 antibody alone in MC38 allograft mice. Using immune checkpoint array we found MIT inhibited expression of FasL and Galectin3. These results suggest that MIT inhibits CD47 expression, while improves PD-L1 expression. Furthermore, the combination of MIT and anti-PD-1 antibody exerts potent antitumor effect.
ISSN:0006-2952
1873-2968
DOI:10.1016/j.bcp.2021.114894