PM1-loaded recombinant human H-ferritin nanocages: A novel pH-responsive sensing platform for the identification of cancer cells

The aggregation-induced emission (AIE) material has been widely used in biological detection due to their unique property of fluorescing in aggregation state. However, the poor dispersion and biocompatibility limit its application in in vivo real-time imaging. Here, a novel strategy is designed to o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of biological macromolecules 2022-02, Vol.199, p.223-233
Hauptverfasser: Xia, Xiaoyu, Tan, Xiaoyi, Wu, Chao, Li, Yao, Zhao, Guanghua, Du, Ming
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The aggregation-induced emission (AIE) material has been widely used in biological detection due to their unique property of fluorescing in aggregation state. However, the poor dispersion and biocompatibility limit its application in in vivo real-time imaging. Here, a novel strategy is designed to obtain pH-responsive AIE nanomaterials, working through 4-Undecoxy Tetraphenyl Ethylene Methacrylate (PM1) block, with excellent features (dispersion, biocompatibility, self-reconstruction and cancer specific recognition). The recombinant human H-ferritin (rHuHF) was used to prepare rHuHF-PM1 nanocomposites which effectively supported the dispersion and transfer of PM1 in the biological environment, even making it target tumor cells due to the overexpression of ferritin receptors on tumor cells. To simulate the changes of rHuHF in intracellular lysosomes, particle size and fluorescence of rHuHF-PM1 were analyzed, which reflected the loose structural changes of rHuHF nanocages in weak acid system that facilitated the degradation of macromolecular rHuHF in intracellular lysosomes and following release of PM1. The released PM1 molecules aggregated and emitted brilliant blue fluorescence. Several cell lines, Hela, HT-29, HepG2, L-O2 and HUVEC have all been sensitively detected and distinguished. Accordingly, this nanocage has a potential to be applied to disease diagnosis and provides a novel sensing platform for the identification of cancer. [Display omitted]
ISSN:0141-8130
1879-0003
DOI:10.1016/j.ijbiomac.2021.12.068