Simultaneous, High-Precision Measurements of δ2H and δ13C in Nanomole Quantities of Acetate Using Electrospray Ionization-Quadrupole-Orbitrap Mass Spectrometry

Stable hydrogen isotope compositions (2H/1H ratios) have been an invaluable tool for studying biogeochemical processes in nature, but the diversity of molecular targets amenable to such analysis is limited. Here, we demonstrate a new technique for measuring δ2H of biomolecules via Orbitrap mass spec...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analytical chemistry (Washington) 2022-01, Vol.94 (2), p.1092-1100
Hauptverfasser: Mueller, Elliott P, Sessions, Alex L, Sauer, Peter E, Weiss, Gabriella M, Eiler, John M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Stable hydrogen isotope compositions (2H/1H ratios) have been an invaluable tool for studying biogeochemical processes in nature, but the diversity of molecular targets amenable to such analysis is limited. Here, we demonstrate a new technique for measuring δ2H of biomolecules via Orbitrap mass spectrometry (MS) using acetate as a model analyte. Acetate was chosen as a target molecule because its production and consumption are central to microbial carbon cycling, yet the mechanisms behind acetate turnover remain poorly understood. δ2H of acetate could provide a useful constraint on these processes; however, it remains uncharacterized in nature due to analytical challenges. Electrospray ionization (ESI)-Orbitrap MS circumvents these challenges and delivers methyl-specific H-isotope compositions of acetate with nanomole sensitivity, enough to enable analyses of environmental samples. This approach quantifies the methyl-specific δ2H and molecular-average δ13C of acetate simultaneously while achieving
ISSN:0003-2700
1520-6882
DOI:10.1021/acs.analchem.1c04141