Excited State Spectroscopy of Boron Vacancy Defects in Hexagonal Boron Nitride Using Time-Resolved Optically Detected Magnetic Resonance

We report optically detected magnetic resonance (ODMR) measurements of an ensemble of spin-1 negatively charged boron vacancies in hexagonal boron nitride. The photoluminescence decay rates are spin-dependent, with intersystem crossing rates of 1.02 ns–1 and 2.03 ns–1 for the m S = 0 and m S = ±1 st...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nano letters 2022-01, Vol.22 (1), p.461-467
Hauptverfasser: Baber, Simon, Malein, Ralph Nicholas Edward, Khatri, Prince, Keatley, Paul Steven, Guo, Shi, Withers, Freddie, Ramsay, Andrew J, Luxmoore, Isaac J
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We report optically detected magnetic resonance (ODMR) measurements of an ensemble of spin-1 negatively charged boron vacancies in hexagonal boron nitride. The photoluminescence decay rates are spin-dependent, with intersystem crossing rates of 1.02 ns–1 and 2.03 ns–1 for the m S = 0 and m S = ±1 states, respectively. Time gating the photoluminescence enhances the ODMR contrast by discriminating between different decay rates. This is particularly effective for detecting the spin of the optically excited state, where a zero-field splitting of |D ES | = 2.09 GHz is measured. The magnetic field dependence of the photoluminescence exhibits dips corresponding to the ground (GSLAC) and excited-state (ESLAC) anticrossings and additional anticrossings due to coupling with nearby spin-1/2 parasitic impurities. Comparison to a model suggests that the anticrossings are mediated by the interaction with nuclear spins and allows an estimate of the ratio of the singlet to triplet spin-dependent relaxation rates of κ0/κ1 = 0.34.
ISSN:1530-6984
1530-6992
DOI:10.1021/acs.nanolett.1c04366