Clinical Application of a 3D-Printed Positioning Module and Navigation Template for Percutaneous Vertebroplasty

Background This study aimed to evaluate a personalized 3D-printed percutaneous vertebroplasty positioning module and navigation template based on preoperative CT scan data that was designed to treat patients with vertebral compression fractures caused by osteoporosis. Methods A total of 22 patients...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Surgical innovation 2022-12, Vol.29 (6), p.760-768
Hauptverfasser: Yang, Jing, Ni, Penghui, Zhang, Lina, Lu, Zhanxin, Liu, Dapeng, Mo, Fuhao, Liu, Tang
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Background This study aimed to evaluate a personalized 3D-printed percutaneous vertebroplasty positioning module and navigation template based on preoperative CT scan data that was designed to treat patients with vertebral compression fractures caused by osteoporosis. Methods A total of 22 patients with vertebral compression fractures admitted to our hospital were included in the study. Positioning was performed with the new 3D-printed positioning module, and the navigation template was used for patients in the experimental group, and the traditional perspective method was used for patients in the control group. The experimental group consisted of 11 patients, 2 males and 9 females, with a mean age of 67.27 ± 11.86 years (range: 48 to 80 years), and the control group consisted of 11 patients, 3 males and 8 females, with a mean age of 74.27 ± 7.24 years (range: 63 to 89 years). The puncture positioning duration, number of intraoperative fluoroscopy sessions, and preoperative and postoperative visual analog scale (VAS) scores were statistically analyzed in both groups. Results The experimental group had shorter puncture positioning durations and fewer intraoperative fluoroscopy sessions than the control group, and the differences were statistically significant (P < .05). There were no significant differences in age or preoperative or postoperative VAS scores between the two groups (P > .05). Conclusions The new 3D-printed vertebroplasty positioning module and navigation template shortened the operation time and reduced the number of intraoperative fluoroscopy sessions. It also reduced the difficulty in performing percutaneous vertebroplasty and influenced the learning curve of senior doctors learning this operation to a certain degree.
ISSN:1553-3506
1553-3514
DOI:10.1177/15533506211062404