Bactericidal effects and stability of LL-37 and CAMA in the presence of human lung epithelial cells

Cationic antimicrobial peptides (CAMPs) are important actors in host innate immunity and represent a promising alternative to combat antibiotic resistance. Here, the bactericidal activity of two CAMPs (LL-37 and CAMA) was evaluated against Pseudomonas aeruginosa (PA) in the presence of IB3-1 cells,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Microbes and infection 2022-04, Vol.24 (3), p.104928-104928, Article 104928
Hauptverfasser: Geitani, Regina, Moubareck, Carole Ayoub, Costes, Floriane, Marti, Léa, Dupuis, Gabrielle, Sarkis, Dolla Karam, Touqui, Lhousseine
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Cationic antimicrobial peptides (CAMPs) are important actors in host innate immunity and represent a promising alternative to combat antibiotic resistance. Here, the bactericidal activity of two CAMPs (LL-37 and CAMA) was evaluated against Pseudomonas aeruginosa (PA) in the presence of IB3-1 cells, a cell line derived from patients with cystic fibrosis. The two CAMPs exerted different effects on PA survival depending on the timing of their administration. We observed a greater bactericidal effect when IB3-1 cells were pretreated with sub-minimum bactericidal concentrations (Sub-MBCs) of the CAMPs prior to infection. These findings suggest that CAMPs induce the production of factors by IB3-1 cells that improve their bactericidal action. However, we observed no bactericidal effect when supra-minimum bactericidal concentrations (Supra-MBCs) of the CAMPs were added to IB3-1 cells at the same time or after infection. Western-blot analysis showed a large decrease in LL-37 levels in supernatants of infected IB3-1 cells and an increase in LL-37 binding to these cells after LL-37 administration. LL-37 induced a weak inflammatory response in the cells without being toxic. In conclusion, our findings suggest a potential prophylactic action of CAMPs. The bactericidal effects were low when the CAMPs were added after cell infection, likely due to degradation of CAMPs by bacterial or epithelial cell proteases and/or due to adherence of CAMPs to cells becoming less available for direct bacterial killing.
ISSN:1286-4579
1769-714X
DOI:10.1016/j.micinf.2021.104928