Effect of sphenopalatine ganglion block on intracranial pressure and cerebral venous outflow oxygenation during craniotomy for supratentorial brain tumours

Intraoperative intracranial pressure (ICP) control continues to be a challenge for anaesthetists during craniotomies. Although many standard brain-dehydrating protocols are available, they may be ineffective in certain surgical situations and may result in harm either to the systemic or cerebral cir...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Anaesthesia critical care & pain medicine 2022-02, Vol.41 (1), p.101013-101013, Article 101013
Hauptverfasser: Abdelhaleem, Naglaa Fathy, Youssef, Essam Mohamed
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Intraoperative intracranial pressure (ICP) control continues to be a challenge for anaesthetists during craniotomies. Although many standard brain-dehydrating protocols are available, they may be ineffective in certain surgical situations and may result in harm either to the systemic or cerebral circulation. Sphenopalatine ganglion block (SPGB) can reverse the vasodilatory effects of anaesthesia during craniotomy. This prospective randomised study was carried from June 2020 to February 2021. Fifty-two patients were randomly allocated into two groups, the block group (B) and the non-block control group (Non). Twenty-six patients were enrolled in the (B) group and received a bilateral transnasal SPG block with 2% lidocaine using a hallow culture swab prior to anaesthesia induction. Intraoperative monitoring was performed using standard American Society of Anesthesiologists (ASA) monitors in addition to invasive monitoring using intra-arterial cannulas and jugular venous bulb catheters. Subdural ICP monitors were also employed. The arterio-jugular oxygen difference in mmol/l (AjvDO2) was then calculated. Mean flow velocity cm/s (MFV) and pulsatility index (PI) were monitored in both groups using Transcranial Doppler. Haemodynamic data were recorded every 30 min from induction of anaesthesia until the closure of the dura. There was a significant difference in ICP prior to the dural opening between the block group (B), mean ± sd 7.58 ± 1.47, and the non-block group (Non), mean ± sd (11.69 ± 1.72), p-value < 0.001. There was no significant difference in MFV between (B) group, mean ± sd 72.65 ± 2.28 and (Non) group, mean ± sd 71.19 ± 3.09 before intubation (baseline values). While there was a significant difference after intubation between block group, mean ± sd 72.12 ± 1.77 and non-block group, mean ± sd 74.62 ± 5.07, p-value = 0.02. There was an insignificant difference between (B) and (Non) groups before intubation regarding PI values, while PI was significantly higher in (B) group than the (Non) group after intubation where mean ± sd was 1.17 ± 0.05 versus 0.96 ± 0.09, respectively, p-value = 0.001. There was no significant difference regarding cerebral oxygenation between the groups. SPGB can control factors that increase CBF during anaesthesia by the block of parasympathetic vasodilatory fibres to the arterial system in the anterior cerebral circulation, while neither hindering cerebral venous drainage nor impairing cerebral oxygenation, as it gives no supp
ISSN:2352-5568
2352-5568
DOI:10.1016/j.accpm.2021.101013