Fully symmetric interpolatory rules for multiple integrals over infinite regions with Gaussian weight
Fully symmetric interpolatory integration rules are constructed for multidimensional integrals over infinite integration regions with a Gaussian weight function. The points for these rules are determined by successive extensions of the one-dimensional three-point Gauss-Hermite rule. The new rules ar...
Gespeichert in:
Veröffentlicht in: | Journal of computational and applied mathematics 1996-07, Vol.71 (2), p.299-309 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Fully symmetric interpolatory integration rules are constructed for multidimensional integrals over infinite integration regions with a Gaussian weight function. The points for these rules are determined by successive extensions of the one-dimensional three-point Gauss-Hermite rule. The new rules are shown to be efficient and only moderately unstable. |
---|---|
ISSN: | 0377-0427 1879-1778 |
DOI: | 10.1016/0377-0427(95)00232-4 |