Fully symmetric interpolatory rules for multiple integrals over infinite regions with Gaussian weight

Fully symmetric interpolatory integration rules are constructed for multidimensional integrals over infinite integration regions with a Gaussian weight function. The points for these rules are determined by successive extensions of the one-dimensional three-point Gauss-Hermite rule. The new rules ar...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational and applied mathematics 1996-07, Vol.71 (2), p.299-309
Hauptverfasser: Genz, Alan, Keister, B.D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Fully symmetric interpolatory integration rules are constructed for multidimensional integrals over infinite integration regions with a Gaussian weight function. The points for these rules are determined by successive extensions of the one-dimensional three-point Gauss-Hermite rule. The new rules are shown to be efficient and only moderately unstable.
ISSN:0377-0427
1879-1778
DOI:10.1016/0377-0427(95)00232-4