Numerical approaches for the rapid analysis of prophylactic efficacy against HIV with arbitrary drug-dosing schemes
Pre-exposure prophylaxis (PrEP) is an important pillar to prevent HIV transmission. Because of experimental and clinical shortcomings, mathematical models that integrate pharmacological, viral- and host factors are frequently used to quantify clinical efficacy of PrEP. Stochastic simulations of thes...
Gespeichert in:
Veröffentlicht in: | PLoS computational biology 2021-12, Vol.17 (12), p.e1009295-e1009295 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Pre-exposure prophylaxis (PrEP) is an important pillar to prevent HIV transmission. Because of experimental and clinical shortcomings, mathematical models that integrate pharmacological, viral- and host factors are frequently used to quantify clinical efficacy of PrEP. Stochastic simulations of these models provides sample statistics from which the clinical efficacy is approximated. However, many stochastic simulations are needed to reduce the associated sampling error. To remedy the shortcomings of stochastic simulation, we developed a numerical method that allows predicting the efficacy of arbitrary prophylactic regimen directly from a viral dynamics model, without sampling. We apply the method to various hypothetical dolutegravir (DTG) prophylaxis scenarios. The approach is verified against state-of-the-art stochastic simulation. While the method is more accurate than stochastic simulation, it is superior in terms of computational performance. For example, a continuous 6-month prophylactic profile is computed within a few seconds on a laptop computer. The method's computational performance, therefore, substantially expands the horizon of feasible analysis in the context of PrEP, and possibly other applications. |
---|---|
ISSN: | 1553-7358 1553-734X 1553-7358 |
DOI: | 10.1371/journal.pcbi.1009295 |