Formimidoyltransferase cyclodeaminase prevents the starvation-induced liver hepatomegaly and dysfunction through downregulating mTORC1

The liver is a crucial center in the regulation of energy homeostasis under starvation. Although downregulation of mammalian target of rapamycin complex 1 (mTORC1) has been reported to play pivotal roles in the starvation responses, the underpinning mechanisms in particular upstream factors that dow...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PLoS genetics 2021-12, Vol.17 (12), p.e1009980-e1009980, Article 1009980
Hauptverfasser: Zhang, Wenfeng, Wu, Chaoying, Ni, Rui, Yang, Qifen, Luo, Lingfei, He, Jianbo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The liver is a crucial center in the regulation of energy homeostasis under starvation. Although downregulation of mammalian target of rapamycin complex 1 (mTORC1) has been reported to play pivotal roles in the starvation responses, the underpinning mechanisms in particular upstream factors that downregulate mTORC1 remain largely unknown. To identify genetic variants that cause liver energy disorders during starvation, we conduct a zebrafish forward genetic screen. We identify a liver hulk (lvh) mutant with normal liver under feeding, but exhibiting liver hypertrophy under fasting. The hepatomegaly in lvh is caused by enlarged hepatocyte size and leads to liver dysfunction as well as limited tolerance to starvation. Positional cloning reveals that lvh phenotypes are caused by mutation in the ftcd gene, which encodes the formimidoyltransferase cyclodeaminase (FTCD). Further studies show that in response to starvation, the phosphorylated ribosomal S6 protein (p-RS6), a downstream effector of mTORC1, becomes downregulated in the wild-type liver, but remains at high level in lvh. Inhibition of mTORC1 by rapamycin rescues the hepatomegaly and liver dysfunction of lvh. Thus, we characterize the roles of FTCD in starvation response, which acts as an important upstream factor to downregulate mTORC1, thus preventing liver hypertrophy and dysfunction.
ISSN:1553-7404
1553-7390
1553-7404
DOI:10.1371/journal.pgen.1009980