Advances in FePt-involved nano-system design and application for bioeffect and biosafety
The rapid development and wide application of nanomaterial-involved theranostic agents have drawn surging attention for improving the living standard of humankind and healthcare conditions. In this review, recent developments in the design, synthesis, biocompatibility evaluation and potential nanome...
Gespeichert in:
Veröffentlicht in: | Journal of materials chemistry. B, Materials for biology and medicine Materials for biology and medicine, 2022-01, Vol.1 (3), p.339-357 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The rapid development and wide application of nanomaterial-involved theranostic agents have drawn surging attention for improving the living standard of humankind and healthcare conditions. In this review, recent developments in the design, synthesis, biocompatibility evaluation and potential nanomedicine applications of FePt-involved nano-systems are summarized, especially for cancer theranostic and biological molecule detection. The
in vivo
multi-model imaging capability is discussed in detail, including magnetic resonance imaging and computed tomography. Furthermore, we highlight the significant achievements of various FePt-involved nanotherapeutics for cancer treatment, such as drug delivery, chemodynamic therapy, photodynamic therapy, radiotherapy and immunotherapy. In addition, a series of FePt-involved nanocomposites are also applied for biological molecule detection, such as H
2
O
2
, glucose and naked-eye detection of cancer cells. Ultimately, we also summarize the challenges and prospects of FePt-involved nano-systems in nanocatalytic medicine. This review is expected to give a general pattern for the development of FePt-involved nano-systems in the field of nanocatalytic medicine and analytical determination.
The rapid development and wide application of nanomaterial-involved theranostic agents have drawn surging attention for improving the living standard of humankind and healthcare conditions. |
---|---|
ISSN: | 2050-750X 2050-7518 |
DOI: | 10.1039/d1tb02221k |