Coevolution of Brain, Culture, and Lifespan: Insights from Computer Simulations

Humans possess a number of traits that are rare or absent in other primates, including large brain size, culture, language, extended lifespan (LS), and long post-reproductive period. Here, we use a computer model, TribeSim, originally designed to explore the autocatalytic coevolution of the hominin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biochemistry (Moscow) 2021-12, Vol.86 (12-13), p.1503-1525
Hauptverfasser: Markov, Alexander V., Markov, Mikhail A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Humans possess a number of traits that are rare or absent in other primates, including large brain size, culture, language, extended lifespan (LS), and long post-reproductive period. Here, we use a computer model, TribeSim, originally designed to explore the autocatalytic coevolution of the hominin brain and culture within the framework of the “cultural drive” theory, to find out how culture and brain could coevolve with LS (or aging rate). We show that in the absence of culture, the evolution of LS depends on the intensity of the between-group competition (BGC): strong BGC results in shorter LS. Culture, however, favors genetic evolution of longer LS even if the BGC is strong. Extended LS, in turn, enhances cultural development, thus creating positive feedback. Cultural evolution of LS (accumulation of survival-enhancing or survival-impairing knowledge) differs from the genetic evolution of the same trait, partially because “memes” (ideas, skills, and behaviors) that reduce the risk of death tend to spread in the meme pool even if it is not beneficial to genes. Consequently, cultural evolution of aging tends to result in longer LS than genetic evolution of the same trait. If LS evolves both genetically and culturally, the typical result is a society in which young individuals, due to their genetic predisposition, lead a riskier lifestyle in exchange for a chance to gain additional resources, but accumulate survival-enhancing knowledge with age. Simulations also showed that cultural evolution of adaptive behaviors can contribute to the genetic evolution of a long post-reproductive period, e.g., if the presence of knowledgeable long-livers increases the competitiveness of the group.
ISSN:0006-2979
1608-3040
DOI:10.1134/S0006297921120014