Sea Cucumber Peptides Attenuated the Scopolamine-Induced Memory Impairment in Mice and Rats and the Underlying Mechanism

Social stress and unhealthy diets lead to memory impairment, triggering health problems. This study aimed to determine the mitigating effect and regulation mechanism of sea cucumber peptides (SCP) against memory impairment. Here, scopolamine-induced memory impairment in mouse and rat models was used...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of agricultural and food chemistry 2022-01, Vol.70 (1), p.157-170
Hauptverfasser: Lu, Zhiqiang, Xu, Xiaomeng, Li, Dongmei, Sun, Na, Lin, Songyi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Social stress and unhealthy diets lead to memory impairment, triggering health problems. This study aimed to determine the mitigating effect and regulation mechanism of sea cucumber peptides (SCP) against memory impairment. Here, scopolamine-induced memory impairment in mouse and rat models was used based on behavioral tests, a histological staining technique, Fourier transform infrared microscopy, and gas-chromatographic analysis as well as a Western blotting method. SCP improved the behavioral performance and regulated the disorder of the cholinergic system in mouse models in a dose-dependent manner. Therefore, the underlying mechanism was explored in high-dose SCP using mouse and rat models. SCP repaired damaged neuronal cells, enhanced the Nissl body number, increased the unsaturated lipid level, and activated the long-term potentiation (LTP) pathway (p-CaMKII, p-CREB, and BDNF), both in the mouse and rat hippocampus. The results indicated that SCP upregulated the LTP pathway and unsaturated lipid level to combat scopolamine-induced memory impairment, suggesting that SCP was a potential candidate for neurological recovery.
ISSN:0021-8561
1520-5118
DOI:10.1021/acs.jafc.1c06475