Electric-Field-Resonance-Based Wireless Triboelectric Nanogenerators and Sensors
Energy harvesting and energy transmission are the key technologies for self-powered systems; thus, the combination of these two is urgently needed. An innovative electric field resonance (EFR)-based wireless triboelectric nanogenerator (TENG) is proposed herein. By integrating the TENG with a capaci...
Gespeichert in:
Veröffentlicht in: | ACS applied materials & interfaces 2022-01, Vol.14 (1), p.794-804 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Energy harvesting and energy transmission are the key technologies for self-powered systems; thus, the combination of these two is urgently needed. An innovative electric field resonance (EFR)-based wireless triboelectric nanogenerator (TENG) is proposed herein. By integrating the TENG with a capacitive coupler, the output of the TENG can be transmitted wirelessly from the transmitter to the receiver in the form of an oscillating signal with an energy-transfer efficiency of 67.8% for a 5 cm distance. Theoretical models of the EFR-TENG system are established, showing excellent agreement with the experimental results. It is demonstrated that the flexible EFR-TENG worn on the wrist can drive a digital watch wirelessly or light up at least 40 light-emitting diodes in series. The EFR-TENG is further utilized for spontaneous wireless sensing with a transmission distance up to 2.3 m with high system tolerance, showing the great potential of this novel strategy for energy harvesting and real-time wireless sensing applications. |
---|---|
ISSN: | 1944-8244 1944-8252 |
DOI: | 10.1021/acsami.1c19075 |