Binary Au–Cu Reaction Sites Decorated ZnO for Selective Methane Oxidation to C1 Oxygenates with Nearly 100% Selectivity at Room Temperature

Direct and efficient oxidation of methane to methanol and the related liquid oxygenates provides a promising pathway for sustainable chemical industry, while still remaining an ongoing challenge owing to the dilemma between methane activation and overoxidation. Here, ZnO with highly dispersed dual A...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Chemical Society 2022-01, Vol.144 (2), p.740-750
Hauptverfasser: Luo, Lei, Gong, Zhuyu, Xu, Youxun, Ma, Jiani, Liu, Huifen, Xing, Jialiang, Tang, Junwang
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Direct and efficient oxidation of methane to methanol and the related liquid oxygenates provides a promising pathway for sustainable chemical industry, while still remaining an ongoing challenge owing to the dilemma between methane activation and overoxidation. Here, ZnO with highly dispersed dual Au and Cu species as cocatalysts enables efficient and selective photocatalytic conversion of methane to methanol and one-carbon (C1) oxygenates using O2 as the oxidant operated at ambient temperature. The optimized AuCu–ZnO photocatalyst achieves up to 11225 μmol·g–1·h–1 of primary products (CH3OH and CH3OOH) and HCHO with a nearly 100% selectivity, resulting in a 14.1% apparent quantum yield at 365 nm, much higher than the previous best photocatalysts reported for methane conversion to oxygenates. In situ EPR and XPS disclose that Cu species serve as photoinduced electron mediators to promote O2 activation to •OOH, and simultaneously that Au is an efficient hole acceptor to enhance H2O oxidation to •OH, thus synergistically promoting charge separation and methane transformation. This work highlights the significances of co-modification with suitable dual cocatalysts on simultaneous regulation of activity and selectivity.
ISSN:0002-7863
1520-5126
DOI:10.1021/jacs.1c09141