Inhibition of cryoaggregation of phospholipid liposomes by an Arabidopsis intrinsically disordered dehydrin and its K-segment

Dehydrin is an intrinsically disordered protein involved in the cold tolerance of plants. Although dehydrins have been thought to protect biomembranes under cold conditions, the underlying protective mechanism has not been confirmed. Here we report that Arabidopsis dehydrin AtHIRD11 inhibited the ag...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Colloids and surfaces, B, Biointerfaces B, Biointerfaces, 2022-03, Vol.211, p.112286-112286, Article 112286
Hauptverfasser: Kimura, Yuki, Ohkubo, Tomohiro, Shimizu, Kosuke, Magata, Yasuhiro, Park, Enoch Y., Hara, Masakazu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Dehydrin is an intrinsically disordered protein involved in the cold tolerance of plants. Although dehydrins have been thought to protect biomembranes under cold conditions, the underlying protective mechanism has not been confirmed. Here we report that Arabidopsis dehydrin AtHIRD11 inhibited the aggregation of phospholipid liposomes after freezing and thawing. AtHIRD11 showed significantly greater cryoaggregation-prevention activity than cryoprotective agents such as trehalose, proline, and polyethylene glycols. Amino acid sequence segmentation analysis indicated that the K-segment of AtHIRD11 inhibited the cryoaggregation of phosphatidylcholine (PC) liposomes but other segments did not. This showed that K-segments conserved in all dehydrins were likely to be the cryoprotective sites of dehydrins. Amino acid replacement for a typical K-segment (TypK for short) sequence demonstrated that both hydrophobic and charged amino acids were required for the cryoaggregation-prevention activity of PC liposomes. The amino acid shuffling of TypK remarkably reduced cryoprotective activity. Although TypK did not bind to PC liposomes in solution, the addition of liposomes reduced its disordered content under crowded conditions. Together, these results suggested that dehydrins protected biomembranes via conserved K-segments whose sequences were optimized for cryoprotective activities. [Display omitted] •An intrinsically disordered dehydrin inhibited the cryoaggregation of liposomes.•The K-segment was the cryoprotective site of dehydrin.•The K-segment protected liposomes without binding them.•Liposomes affected the secondary structures of the K-segment.
ISSN:0927-7765
1873-4367
DOI:10.1016/j.colsurfb.2021.112286